128 research outputs found

    New techniques in signal coding

    Get PDF

    Multiple description coding technique to improve the robustness of ACELP based coders AMR-WB

    Get PDF
    In this paper, a concealment method based on multiple-description coding (MDC) is presented, to improve speech quality deterioration caused by packet loss for algebraic code-excited linear prediction (ACELP) based coders. We apply to the ITU-T G.722.2 coder, a packet loss concealment (PLC) technique, which uses packetization schemes based on MDC. This latter is used with two new designed modes, which are modes 5 and 6 (18,25 and 19,85 kbps, respectively). We introduce our new second-order Markov chain model with four states in order to simulate network losses for different loss rates. The performance measures, with objective and subjective tests under various packet loss conditions, show a significant improvement of speech quality for ACELP based coders. The wideband perceptual evaluation of speech quality (WB-PESQ), enhanced modified bark spectral distortion (EMBSD), mean opinion score (MOS) tests and MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) for speech extracted from TIMIT database confirm the efficiency of our proposed approach and show a considerable enhancement in speech quality compared to the embedded algorithm in the standard ITU-T G.722.2

    New Directions in Subband Coding

    Get PDF
    Two very different subband coders are described. The first is a modified dynamic bit-allocation-subband coder (D-SBC) designed for variable rate coding situations and easily adaptable to noisy channel environments. It can operate at rates as low as 12 kb/s and still give good quality speech. The second coder is a 16-kb/s waveform coder, based on a combination of subband coding and vector quantization (VQ-SBC). The key feature of this coder is its short coding delay, which makes it suitable for real-time communication networks. The speech quality of both coders has been enhanced by adaptive postfiltering. The coders have been implemented on a single AT&T DSP32 signal processo

    Time and frequency domain algorithms for speech coding

    Get PDF
    The promise of digital hardware economies (due to recent advances in VLSI technology), has focussed much attention on more complex and sophisticated speech coding algorithms which offer improved quality at relatively low bit rates. This thesis describes the results (obtained from computer simulations) of research into various efficient (time and frequency domain) speech encoders operating at a transmission bit rate of 16 Kbps. In the time domain, Adaptive Differential Pulse Code Modulation (ADPCM) systems employing both forward and backward adaptive prediction were examined. A number of algorithms were proposed and evaluated, including several variants of the Stochastic Approximation Predictor (SAP). A Backward Block Adaptive (BBA) predictor was also developed and found to outperform the conventional stochastic methods, even though its complexity in terms of signal processing requirements is lower. A simplified Adaptive Predictive Coder (APC) employing a single tap pitch predictor considered next provided a slight improvement in performance over ADPCM, but with rather greater complexity. The ultimate test of any speech coding system is the perceptual performance of the received speech. Recent research has indicated that this may be enhanced by suitable control of the noise spectrum according to the theory of auditory masking. Various noise shaping ADPCM configurations were examined, and it was demonstrated that a proposed pre-/post-filtering arrangement which exploits advantageously the predictor-quantizer interaction, leads to the best subjective performance in both forward and backward prediction systems. Adaptive quantization is instrumental to the performance of ADPCM systems. Both the forward adaptive quantizer (AQF) and the backward oneword memory adaptation (AQJ) were examined. In addition, a novel method of decreasing quantization noise in ADPCM-AQJ coders, which involves the application of correction to the decoded speech samples, provided reduced output noise across the spectrum, with considerable high frequency noise suppression. More powerful (and inevitably more complex) frequency domain speech coders such as the Adaptive Transform Coder (ATC) and the Sub-band Coder (SBC) offer good quality speech at 16 Kbps. To reduce complexity and coding delay, whilst retaining the advantage of sub-band coding, a novel transform based split-band coder (TSBC) was developed and found to compare closely in performance with the SBC. To prevent the heavy side information requirement associated with a large number of bands in split-band coding schemes from impairing coding accuracy, without forgoing the efficiency provided by adaptive bit allocation, a method employing AQJs to code the sub-band signals together with vector quantization of the bit allocation patterns was also proposed. Finally, 'pipeline' methods of bit allocation and step size estimation (using the Fast Fourier Transform (FFT) on the input signal) were examined. Such methods, although less accurate, are nevertheless useful in limiting coding delay associated with SRC schemes employing Quadrature Mirror Filters (QMF)

    Media gateway utilizando um GPU

    Get PDF
    Mestrado em Engenharia de Computadores e Telemátic
    corecore