8,701 research outputs found

    Optimized Cluster-Based Dynamic Energy-Aware Routing Protocol for Wireless Sensor Networks in Agriculture Precision

    Full text link
    [EN] Wireless sensor networks (WSNs) are becoming one of the demanding platforms, where sensor nodes are sensing and monitoring the physical or environmental conditions and transmit the data to the base station via multihop routing. Agriculture sector also adopted these networks to promote innovations for environmental friendly farming methods, lower the management cost, and achieve scientific cultivation. Due to limited capabilities, the sensor nodes have suffered with energy issues and complex routing processes and lead to data transmission failure and delay in the sensor-based agriculture fields. Due to these limitations, the sensor nodes near the base station are always relaying on it and cause extra burden on base station or going into useless state. To address these issues, this study proposes a Gateway Clustering Energy-Efficient Centroid- (GCEEC-) based routing protocol where cluster head is selected from the centroid position and gateway nodes are selected from each cluster. Gateway node reduces the data load from cluster head nodes and forwards the data towards the base station. Simulation has performed to evaluate the proposed protocol with state-of-the-art protocols. The experimental results indicated the better performance of proposed protocol and provide more feasible WSN-based monitoring for temperature, humidity, and illumination in agriculture sector.This work has also been partially supported by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR.Qureshi, KN.; Bashir, MU.; Lloret, J.; León Fernández, A. (2020). Optimized Cluster-Based Dynamic Energy-Aware Routing Protocol for Wireless Sensor Networks in Agriculture Precision. Journal of Sensors. 2020:1-19. https://doi.org/10.1155/2020/9040395S1192020Sneha, K., Kamath, R., Balachandra, M., & Prabhu, S. (2019). New Gossiping Protocol for Routing Data in Sensor Networks for Precision Agriculture. Soft Computing and Signal Processing, 139-152. doi:10.1007/978-981-13-3393-4_15Qureshi, K. N., Abdullah, A. H., Bashir, F., Iqbal, S., & Awan, K. M. (2018). Cluster-based data dissemination, cluster head formation under sparse, and dense traffic conditions for vehicular ad hoc networks. International Journal of Communication Systems, 31(8), e3533. doi:10.1002/dac.3533Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104-122. doi:10.1016/j.comnet.2014.03.027Feng, X., Zhang, J., Ren, C., & Guan, T. (2018). An Unequal Clustering Algorithm Concerned With Time-Delay for Internet of Things. IEEE Access, 6, 33895-33909. doi:10.1109/access.2018.2847036Savaglio, C., Pace, P., Aloi, G., Liotta, A., & Fortino, G. (2019). Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks. IEEE Access, 7, 29355-29364. doi:10.1109/access.2019.2902371Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297-307. doi:10.1016/j.jclepro.2014.04.036Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513Qureshi, K. N., Din, S., Jeon, G., & Piccialli, F. (2020). Link quality and energy utilization based preferable next hop selection routing for wireless body area networks. Computer Communications, 149, 382-392. doi:10.1016/j.comcom.2019.10.030Kumar, S. A., & Ilango, P. (2017). The Impact of Wireless Sensor Network in the Field of Precision Agriculture: A Review. Wireless Personal Communications, 98(1), 685-698. doi:10.1007/s11277-017-4890-zAnisi, M. H., Abdul-Salaam, G., & Abdullah, A. H. (2014). A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precision Agriculture, 16(2), 216-238. doi:10.1007/s11119-014-9371-8Long, D. S., & McCallum, J. D. (2015). On-combine, multi-sensor data collection for post-harvest assessment of environmental stress in wheat. Precision Agriculture, 16(5), 492-504. doi:10.1007/s11119-015-9391-zFu, X., Fortino, G., Li, W., Pace, P., & Yang, Y. (2019). WSNs-assisted opportunistic network for low-latency message forwarding in sparse settings. Future Generation Computer Systems, 91, 223-237. doi:10.1016/j.future.2018.08.031Mehmood, A., Khan, S., Shams, B., & Lloret, J. (2013). Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. International Journal of Communication Systems, 28(5), 972-989. doi:10.1002/dac.2720Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey. IEEE Communications Surveys & Tutorials, 15(2), 551-591. doi:10.1109/surv.2012.062612.00084De Farias, C. M., Pirmez, L., Fortino, G., & Guerrieri, A. (2019). A multi-sensor data fusion technique using data correlations among multiple applications. Future Generation Computer Systems, 92, 109-118. doi:10.1016/j.future.2018.09.034Rao, P. C. S., Jana, P. K., & Banka, H. (2016). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Networks, 23(7), 2005-2020. doi:10.1007/s11276-016-1270-7Fu, X., Fortino, G., Pace, P., Aloi, G., & Li, W. (2020). Environment-fusion multipath routing protocol for wireless sensor networks. Information Fusion, 53, 4-19. doi:10.1016/j.inffus.2019.06.001Liu, X. (2015). Atypical Hierarchical Routing Protocols for Wireless Sensor Networks: A Review. IEEE Sensors Journal, 15(10), 5372-5383. doi:10.1109/jsen.2015.2445796Jan, N., Javaid, N., Javaid, Q., Alrajeh, N., Alam, M., Khan, Z. A., & Niaz, I. A. (2017). A Balanced Energy-Consuming and Hole-Alleviating Algorithm for Wireless Sensor Networks. IEEE Access, 5, 6134-6150. doi:10.1109/access.2017.2676004Gupta, G. P., Misra, M., & Garg, K. (2014). Energy and trust aware mobile agent migration protocol for data aggregation in wireless sensor networks. Journal of Network and Computer Applications, 41, 300-311. doi:10.1016/j.jnca.2014.01.003Safa, H., Karam, M., & Moussa, B. (2014). PHAODV: Power aware heterogeneous routing protocol for MANETs. Journal of Network and Computer Applications, 46, 60-71. doi:10.1016/j.jnca.2014.07.035Liu, X. (2015). An Optimal-Distance-Based Transmission Strategy for Lifetime Maximization of Wireless Sensor Networks. IEEE Sensors Journal, 15(6), 3484-3491. doi:10.1109/jsen.2014.2372340Brar, G. S., Rani, S., Chopra, V., Malhotra, R., Song, H., & Ahmed, S. H. (2016). Energy Efficient Direction-Based PDORP Routing Protocol for WSN. IEEE Access, 4, 3182-3194. doi:10.1109/access.2016.2576475Abo-Zahhad, M., Ahmed, S. M., Sabor, N., & Sasaki, S. (2015). Mobile Sink-Based Adaptive Immune Energy-Efficient Clustering Protocol for Improving the Lifetime and Stability Period of Wireless Sensor Networks. IEEE Sensors Journal, 15(8), 4576-4586. doi:10.1109/jsen.2015.2424296Huynh, T.-T., Dinh-Duc, A.-V., & Tran, C.-H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks, 18(4), 580-588. doi:10.1109/jcn.2016.000081Shen, J., Wang, A., Wang, C., Hung, P. C. K., & Lai, C.-F. (2017). An Efficient Centroid-Based Routing Protocol for Energy Management in WSN-Assisted IoT. IEEE Access, 5, 18469-18479. doi:10.1109/access.2017.2749606Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges. Wireless Communications and Mobile Computing, 2019, 1-20. doi:10.1155/2019/6470359Sajwan, M., Gosain, D., & Sharma, A. K. (2018). CAMP: cluster aided multi-path routing protocol for wireless sensor networks. Wireless Networks, 25(5), 2603-2620. doi:10.1007/s11276-018-1689-0Varga, A. (2010). OMNeT++. Modeling and Tools for Network Simulation, 35-59. doi:10.1007/978-3-642-12331-3_3Lartillot, O., Toiviainen, P., & Eerola, T. (2008). A Matlab Toolbox for Music Information Retrieval. Studies in Classification, Data Analysis, and Knowledge Organization, 261-268. doi:10.1007/978-3-540-78246-9_31Mathur, P., Nielsen, R. H., Prasad, N. R., & Prasad, R. (2016). Data collection using miniature aerial vehicles in wireless sensor networks. IET Wireless Sensor Systems, 6(1), 17-25. doi:10.1049/iet-wss.2014.0120Zou, T., Lin, S., Feng, Q., & Chen, Y. (2016). Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks. Sensors, 16(1), 53. doi:10.3390/s16010053Song, Y., Ma, J., Zhang, X., & Feng, Y. (2012). Design of Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System. Journal of Networks, 7(5). doi:10.4304/jnw.7.5.838-844Nikolidakis, S., Kandris, D., Vergados, D., & Douligeris, C. (2013). Energy Efficient Routing in Wireless Sensor Networks Through Balanced Clustering. Algorithms, 6(1), 29-42. doi:10.3390/a6010029Ndzi, D. L., Harun, A., Ramli, F. M., Kamarudin, M. L., Zakaria, A., Shakaff, A. Y. M., … Farook, R. S. (2014). Wireless sensor network coverage measurement and planning in mixed crop farming. Computers and Electronics in Agriculture, 105, 83-94. doi:10.1016/j.compag.2014.04.01

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    DronAway: A Proposal on the Use of Remote Sensing Drones as Mobile Gateway for WSN in Precision Agriculture

    Full text link
    [EN] The increase in the world population has led to new needs for food. Precision Agriculture (PA) is one of the focuses of these policies to optimize the crops and facilitate crop management using technology. Drones have been gaining popularity in PA to perform remote sensing activities such as photo and video capture as well as other activities such as fertilization or scaring animals. These drones could be used as a mobile gateway as well, benefiting from its already designed flight plan. In this paper, we evaluate the adequacy of remote sensing drones to perform gateway functionalities, providing a guide for choosing the best drone parameters for successful WiFi data transmission between sensor nodes and the gateway in PA systems for crop monitoring and management. The novelty of this paper compared with existing mobile gateway proposals is that we are going to test the performance of the drone that is acting as a remote sensing tool to carry a low-cost gateway node to gather the data from the nodes deployed on the field. Taking this in mind, simulations of different scenarios were performed to determine if the data can be transmitted correctly or not considering different flying parameters such as speed (from 1 to 20 m/s) and flying height (from 4 to 104 m) and wireless sensor network parameters such as node density (1 node each 60 m(2) to 1 node each 5000 m(2)) and antenna coverage (25 to 200 m). We have calculated the time that each node remains with connectivity and the time required to send the data to estimate if the connection will be bad, good, or optimal. Results point out that for the maximum node density, there is only one combination that offers good connectivity (lowest velocity, the flying height of 24 m, and antenna with 25 m of coverage). For the other node densities, several combinations of flying height and antenna coverage allows good and optimal connectivity.This work is partially founded by the European Union with the "Fondo Europeo Agricola de Desarrollo Rural (FEADER)-Europa invierte en zonas rurales", the MAPAMA, and Comunidad de Madrid with the IMIDRA, under the mark of the PDR-CM 2014-2020" project number PDR18-XEROCESPED, by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR, and by Conselleria de Educacion, Cultura y Deporte with the Subvenciones para la contratacion de personal investigador en fase postdoctoral, grant number APOSTD/2019/04.García, L.; Parra-Boronat, L.; Jimenez, JM.; Lloret, J.; Mauri, PV.; Lorenz, P. (2020). DronAway: A Proposal on the Use of Remote Sensing Drones as Mobile Gateway for WSN in Precision Agriculture. Applied Sciences. 10(19):1-23. https://doi.org/10.3390/app10196668S1231019Agriculture and Rural Development Agriculture and Rural Development https://ec.europa.eu/agriculture/cap-post-2013/Kropff, M. J., Wallinga, J., & Lotz, L. A. P. (2007). Modelling for Precision Weed Management. Ciba Foundation Symposium 210 - Precision Agriculture: Spatial and Temporal Variability of Environmental Quality, 182-207. doi:10.1002/9780470515419.ch12Toth, C., & Jóźków, G. (2016). Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 22-36. doi:10.1016/j.isprsjprs.2015.10.004Pajares, G. (2015). Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81(4), 281-330. doi:10.14358/pers.81.4.281Maes, W. H., & Steppe, K. (2019). Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends in Plant Science, 24(2), 152-164. doi:10.1016/j.tplants.2018.11.007Psirofonia, P., Samaritakis, V., Eliopoulos, P., & Potamitis, I. (2017). Use of Unmanned Aerial Vehicles for Agricultural Applications with Emphasis on Crop Protection: Three Novel Case - studies. International Journal of Agricultural Science and Technology, 5(1), 30-39. doi:10.12783/ijast.2017.0501.03Agriculture Drones Market by Offering (Hardware and Software & Services), Application (Precision Farming, Livestock Monitoring, Precision Fish Farming, and Smart Greenhouse), Component, and Geography—Global Forecast to 2024 https://www.marketsandmarkets.com/Market-Reports/agriculture-drones-market-23709764.html?gclid=CjwKCAiA-P7xBRAvEiwAow-VaRPLzQ4x9YHOwUyC4e-PBfJvjpkB4Bqx9WWIt6S-lM0FsKvUcbqLdxoC_VcQAvD_BwECunliffe, A. M., Brazier, R. E., & Anderson, K. (2016). Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sensing of Environment, 183, 129-143. doi:10.1016/j.rse.2016.05.019Zhang, J., Hu, J., Lian, J., Fan, Z., Ouyang, X., & Ye, W. (2016). Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 60-69. doi:10.1016/j.biocon.2016.03.027Urbahs, A., & Jonaite, I. (2013). FEATURES OF THE USE OF UNMANNED AERIAL VEHICLES FOR AGRICULTURE APPLICATIONS. Aviation, 17(4), 170-175. doi:10.3846/16487788.2013.861224Raeva, P. L., Šedina, J., & Dlesk, A. (2018). Monitoring of crop fields using multispectral and thermal imagery from UAV. European Journal of Remote Sensing, 52(sup1), 192-201. doi:10.1080/22797254.2018.1527661Stehr, N. J. (2015). Drones: The Newest Technology for Precision Agriculture. Natural Sciences Education, 44(1), 89-91. doi:10.4195/nse2015.04.0772Kurkute, S. R. (2018). Drones for Smart Agriculture: A Technical Report. International Journal for Research in Applied Science and Engineering Technology, 6(4), 341-346. doi:10.22214/ijraset.2018.4061Puri, V., Nayyar, A., & Raja, L. (2017). Agriculture drones: A modern breakthrough in precision agriculture. Journal of Statistics and Management Systems, 20(4), 507-518. doi:10.1080/09720510.2017.1395171Valente, J., Sanz, D., Barrientos, A., Cerro, J. del, Ribeiro, Á., & Rossi, C. (2011). An Air-Ground Wireless Sensor Network for Crop Monitoring. Sensors, 11(6), 6088-6108. doi:10.3390/s110606088Hunt, E. R., & Daughtry, C. S. T. (2017). What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? International Journal of Remote Sensing, 39(15-16), 5345-5376. doi:10.1080/01431161.2017.1410300Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A Review on UAV-Based Applications for Precision Agriculture. Information, 10(11), 349. doi:10.3390/info10110349Daponte, P., De Vito, L., Glielmo, L., Iannelli, L., Liuzza, D., Picariello, F., & Silano, G. (2019). A review on the use of drones for precision agriculture. IOP Conference Series: Earth and Environmental Science, 275, 012022. doi:10.1088/1755-1315/275/1/012022Boehm, F., & Schulte, A. (2013). Air to ground sensor data distribution using IEEE802.11N Wi-Fi network. 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC). doi:10.1109/dasc.2013.6712581Stek, T. D. (2016). Drones over Mediterranean landscapes. The potential of small UAV’s (drones) for site detection and heritage management in archaeological survey projects: A case study from Le Pianelle in the Tappino Valley, Molise (Italy). Journal of Cultural Heritage, 22, 1066-1071. doi:10.1016/j.culher.2016.06.006Marín, J., Parra, L., Rocher, J., Sendra, S., Lloret, J., Mauri, P. V., & Masaguer, A. (2018). Urban Lawn Monitoring in Smart City Environments. Journal of Sensors, 2018, 1-16. doi:10.1155/2018/8743179Ojha, T., Misra, S., & Raghuwanshi, N. S. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, 118, 66-84. doi:10.1016/j.compag.2015.08.011Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31-48. doi:10.1016/j.biosystemseng.2017.09.007Aqeel-ur-Rehman, Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards & Interfaces, 36(2), 263-270. doi:10.1016/j.csi.2011.03.004Ruiz-Garcia, L., Lunadei, L., Barreiro, P., & Robla, I. (2009). A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends. Sensors, 9(6), 4728-4750. doi:10.3390/s90604728Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297-307. doi:10.1016/j.jclepro.2014.04.036Yu, X., Wu, P., Han, W., & Zhang, Z. (2013). A survey on wireless sensor network infrastructure for agriculture. Computer Standards & Interfaces, 35(1), 59-64. doi:10.1016/j.csi.2012.05.001Chaudhary, D. D., Nayse, S. P., & Waghmare, L. M. (2011). Application of Wireless Sensor Networks for Greenhouse Parameter Control in Precision Agriculture. International Journal of Wireless & Mobile Networks, 3(1), 140-149. doi:10.5121/ijwmn.2011.3113Díaz, S. E., Pérez, J. C., Mateos, A. C., Marinescu, M.-C., & Guerra, B. B. (2011). A novel methodology for the monitoring of the agricultural production process based on wireless sensor networks. Computers and Electronics in Agriculture, 76(2), 252-265. doi:10.1016/j.compag.2011.02.004Zhu, Y., Song, J., & Dong, F. (2011). Applications of wireless sensor network in the agriculture environment monitoring. Procedia Engineering, 16, 608-614. doi:10.1016/j.proeng.2011.08.1131Keshtgari, M., & Deljoo, A. (2012). A Wireless Sensor Network Solution for Precision Agriculture Based on Zigbee Technology. Wireless Sensor Network, 04(01), 25-30. doi:10.4236/wsn.2012.41004Hwang, J., Shin, C., & Yoe, H. (2010). Study on an Agricultural Environment Monitoring Server System using Wireless Sensor Networks. Sensors, 10(12), 11189-11211. doi:10.3390/s101211189Garcia-Sanchez, A.-J., Garcia-Sanchez, F., & Garcia-Haro, J. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288-303. doi:10.1016/j.compag.2010.12.005García, L., Parra, L., Jimenez, J. M., Lloret, J., & Lorenz, P. (2019). Practical Design of a WSN to Monitor the Crop and its Irrigation System. Network Protocols and Algorithms, 10(4), 35. doi:10.5296/npa.v10i4.14147Popescu, D., Stoican, F., Stamatescu, G., Ichim, L., & Dragana, C. (2020). Advanced UAV–WSN System for Intelligent Monitoring in Precision Agriculture. Sensors, 20(3), 817. doi:10.3390/s20030817Specifications of the WEMOS MINI DI https://docs.wemos.cc/en/latest/d1/d1_mini.htmlSpecifications of the Node MCU https://joy-it.net/en/products/SBC-NodeMCU-ESP32Specifications of the Arduino Mega https://store.arduino.cc/arduino-mega-2560-rev3Specifications of the Arduino UNO https://store.arduino.cc/arduino-uno-rev3Specifications of the Raspberry Pi Model B+ https://www.raspberrypi-spy.co.uk/2018/03/introducing-raspberry-pi-3-b-plus-computer/Zorbas, D., Di Puglia Pugliese, L., Razafindralambo, T., & Guerriero, F. (2016). Optimal drone placement and cost-efficient target coverage. Journal of Network and Computer Applications, 75, 16-31. doi:10.1016/j.jnca.2016.08.009Parra, L., Rocher, J., García, L., Lloret, J., Tomás, J., Romero, O., … Roig, B. (2018). Design of a WSN for smart irrigation in citrus plots with fault-tolerance and energy-saving algorithms. Network Protocols and Algorithms, 10(2), 95. doi:10.5296/npa.v10i2.1320

    A new wireless underground network system for continuous monitoring of soil water contents

    Get PDF
    A new stand-alone wireless embedded network system has been developed recently for continuous monitoring of soil water contents at multiple depths. This paper presents information on the technical aspects of the system, including the applied sensor technology, the wireless communication protocols, the gateway station for data collection, and data transfer to an end user Web page for disseminating results to targeted audiences. Results from the first test of the network system are presented and discussed, including lessons learned so far and actions to be undertaken in the near future to improve and enhance the operability of this innovative measurement approac
    corecore