157 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationWe are living in an age where data are being generated faster than anyone has previously imagined across a broad application domain, including customer studies, social media, sensor networks, and the sciences, among many others. In some cases, data are generated in massive quantities as terabytes or petabytes. There have been numerous emerging challenges when dealing with massive data, including: (1) the explosion in size of data; (2) data have increasingly more complex structures and rich semantics, such as representing temporal data as a piecewise linear representation; (3) uncertain data are becoming a common occurrence for numerous applications, e.g., scientific measurements or observations such as meteorological measurements; (4) and data are becoming increasingly distributed, e.g., distributed data collected and integrated from distributed locations as well as data stored in a distributed file system within a cluster. Due to the massive nature of modern data, it is oftentimes infeasible for computers to efficiently manage and query them exactly. An attractive alternative is to use data summarization techniques to construct data summaries, where even efficiently constructing data summaries is a challenging task given the enormous size of data. The data summaries we focus on in this thesis include the histogram and ranking operator. Both data summaries enable us to summarize a massive dataset to a more succinct representation which can then be used to make queries orders of magnitude more efficient while still allowing approximation guarantees on query answers. Our study has focused on the critical task of designing efficient algorithms to summarize, query, and manage massive data

    Hiroshima University Research and Technology Guide 2014 Version : Natural Science & Engineering

    Get PDF

    Improving the Efficacy of Context-Aware Applications

    Get PDF
    In this dissertation, we explore methods for enhancing the context-awareness capabilities of modern computers, including mobile devices, tablets, wearables, and traditional computers. Advancements include proposed methods for fusing information from multiple logical sensors, localizing nearby objects using depth sensors, and building models to better understand the content of 2D images. First, we propose a system called Unagi, designed to incorporate multiple logical sensors into a single framework that allows context-aware application developers to easily test new ideas and create novel experiences. Unagi is responsible for collecting data, extracting features, and building personalized models for each individual user. We demonstrate the utility of the system with two applications: adaptive notification filtering and a network content prefetcher. We also thoroughly evaluate the system with respect to predictive accuracy, temporal delay, and power consumption. Next, we discuss a set of techniques that can be used to accurately determine the location of objects near a user in 3D space using a mobile device equipped with both depth and inertial sensors. Using a novel chaining approach, we are able to locate objects farther away than the standard range of the depth sensor without compromising localization accuracy. Empirical testing shows our method is capable of localizing objects 30m from the user with an error of less than 10cm. Finally, we demonstrate a set of techniques that allow a multi-layer perceptron (MLP) to learn resolution-invariant representations of 2D images, including the proposal of an MCMC-based technique to improve the selection of pixels for mini-batches used for training. We also show that a deep convolutional encoder could be trained to output a resolution-independent representation in constant time, and we discuss several potential applications of this research, including image resampling, image compression, and security
    • …
    corecore