7 research outputs found

    A QoS Guaranteed Energy-Efficient Scheduling for IEEE 802.16e

    Get PDF

    Multiple Power-Saving MSSs Scheduling Methods for IEEE802.16e Broadband Wireless Networks

    Get PDF

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions

    Efficient design of WIMAX/802.16 mesh networks

    Get PDF
    Broadband wireless networks are becoming increasingly popular due to their fast and inexpensive deployment and their capabilities of providing flexible and ubiquitous Internet access. While the majority of existing broadband wireless networks are still exclusively limited to single hop access, it is the ability of these networks to forward data frames over multi-hop wireless routes which enabled them to easily extend the network coverage area. Unfortunately, achieving good multi- hop throughput has been challenging due to several factors, such as lossy wireless links caused by interference from concurrent transmissions, and intra-path interference caused by transmissions on successive hops along a single path. A wireless mesh network WMN consists of a number of stationary wireless mesh routers, forming a wireless backbone. The wireless mesh routers serve as access points (APs) for wireless mobile devices, and some of them also act as gateways to the Internet via high speed wireless links. Several technologies are currently being considered for mesh (multi-hop) networks, including, IEEE 802.11 (both single channel and multi-channel), IEEE 802.16/WiMAX, and next generation cellular networks (LTE). In this work, we focus on the IEEE 802.16. To maximize the network performance of mesh networks (e.g., throughput), it is essential to consider a cross-layer design, exploiting the dependency between protocol layers such as the routing network layer and the scheduling resource allocation MAC layer. Therefore this PhD thesis considers a cross-layer design approach for designing efficient wireless mesh networks; we first develop mathematical models (link-based and path-based) for the problem of joint routing tree construction and link scheduling in WiMAX-based mesh networks with the objective of minimizing the schedule length to satisfy a set of uplink and downlink demands. This is achieved by maximizing the number of concurrent active transmissions in the network by efficiently reusing the spectrum spatially. Second, we exploit the broadcasts nature of the wireless medium and enhance our design models by incorporating opportunistic network coding into the joint routing tree construction and link scheduling problem. Identifying coding-aware routing structures and utilizing the broadcasting feature of the wireless medium play an important role in realizing the achievable gain of network coding. Last, the uprising mobile WiMAX (802.16e amendment) has introduced more difficulties and challenges into the network design problem; thus, ensuring larger connection lifetime and better routing stability become of greater interest for the joint routing and scheduling problem. This is addressed by augmenting the previously designed models. Throughout this thesis, we assume centralized scheduling at the base station (BS) and we develop, for the joint problems, integer linear programming (ILP) models which require the enumeration of all feasible solutions to reach the optimal solution. Given their complexities, we rely on optimization decomposition methods using column generation for solving each model in an efficient way

    Energy efficiency in next generation wireless networks: methodologies, solutions and algorithms

    Get PDF
    Mobile Broadband Wireless Access (BWA) networks will offer in the forthcoming years multiple and differentiated services to users with high mobility requirements, connecting via portable or wearable devices which rely on the use of batteries by necessity. Since such devices consume a relatively large fraction of energy for transmitting/receiving data over-the-air, mechanisms are needed to reduce power consumption, in order to increase the lifetime of devices and hence improve user’s satisfaction. Next generation wireless network standards define power saving functions at the Medium Access Control (MAC) layer, which allow user terminals to switch off the radio transceiver during open traffic sessions for greatest energy consumption reduction. However, enabling power saving usually increases the transmission latency, which can negatively affect the Quality of Service (QoS) experienced by users. On the other hand, imposing stringent QoS requirements may limit the amount of energy that can be saved. The IEEE 802.16e standard defines the sleep mode is power saving mechanism with the purpose of reducing energy consumption. Three different operation classes are provided, each one to serve different class of traffic: class I, best effort traffic, class II real time traffic and class III multicast traffic. Several aspects of the sleep mode are left unspecified, as it is usually done in standards, allowing manufacturers to implement their own proprietary solutions, thus gaining a competitive advantage over the rivals. The work of this thesis is aimed at verifying, the effectiveness of the power saving mechanism proposed into IEEE 802.16e standard, focusing on the mutual interaction between power saving and QoS support. Two types of delay constrained applications with different requirements are considered, i.e., Web and Voice over IP (VoIP). The performance is assessed via detailed packet-level simulation, with respect to several system parameters. To capture the relative contribution of all the factors on the energy- and QoS-related metrics, part of the evaluation is carried out by means of 2k · r! analysis. Our study shows that the sleep mode can achieve significant power consumption reduction, however, when real time traffic is considered a wise configuration of the parameters is mandatory in order to avoid unacceptable degradation of the QoS. Finally, based on the guidelines drawn through the analysis, we extend our contribution beyond a simple evaluation, proposing a power saving aware scheduling framework aimed at reducing further the energy consumption. Our framework integrates with existing scheduling policies that can pursue their original goals, e.g. maximizing throughput or fairness, while improving the energy efficiency of the user terminals. Its effectiveness is assessed through an extensive packet level simulation campaign

    Majlis Konvokesyen ke-39

    Get PDF
    corecore