935 research outputs found

    A distributed compressive sensing technique for data gathering in Wireless Sensor Networks

    Get PDF
    Compressive sensing is a new technique utilized for energy efficient data gathering in wireless sensor networks. It is characterized by its simple encoding and complex decoding. The strength of compressive sensing is its ability to reconstruct sparse or compressible signals from small number of measurements without requiring any a priori knowledge about the signal structure. Considering the fact that wireless sensor nodes are often deployed densely, the correlation among them can be utilized for further compression. By utilizing this spatial correlation, we propose a joint sparsity-based compressive sensing technique in this paper. Our approach employs Bayesian inference to build probabilistic model of the signals and thereafter applies belief propagation algorithm as a decoding method to recover the common sparse signal. The simulation results show significant gain in terms of signal reconstruction accuracy and energy consumption of our approach compared with existing approaches

    Energy-efficient Compressive Data Gathering Utilizing Virtual Multi-input Multi-output

    Get PDF
    Data gathering is an attractive operation for obtaining information in wireless sensor networks (WSNs). But one of important challenges is to minimize energy consumption of networks. In this paper, an integration of distributed compressive sensing (CS) and virtual multi-input multi-output (vMIMO) in WSNs is proposed to significantly decrease the data gathering cost. The scheme first constructs a distributed data compression model based on low density parity check-like (LDPC-like) codes. Then a cluster-based dynamic virtual MIMO transmission protocol is proposed. The number of clusters, number of cooperative nodes and the constellation size are determined by a new established optimization model under the restrictions of compression model. Finally, simulation results show that the scheme can reduce the data gathering cost and prolong the sensor network’s lifetime in a reliable guarantee of sensory data recovery quality

    Compressed Sensing based Dynamic PSD Map Construction in Cognitive Radio Networks

    Get PDF
    In the context of spectrum sensing in cognitive radio networks, collaborative spectrum sensing has been proposed as a way to overcome multipath and shadowing, and hence increasing the reliability of the sensing. Due to the high amount of information to be transmitted, a dynamic compressive sensing approach is proposed to map the PSD estimate to a sparse domain which is then transmitted to the fusion center. In this regard, CRs send a compressed version of their estimated PSD to the fusion center, whose job is to reconstruct the PSD estimates of the CRs, fuse them, and make a global decision on the availability of the spectrum in space and frequency domains at a given time. The proposed compressive sensing based method considers the dynamic nature of the PSD map, and uses this dynamicity in order to decrease the amount of data needed to be transmitted between CR sensors’ and the fusion center. By using the proposed method, an acceptable PSD map for cognitive radio purposes can be achieved by only 20 % of full data transmission between sensors and master node. Also, simulation results show the robustness of the proposed method against the channel variations, diverse compression ratios and processing times in comparison with static methods

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Secure Wireless Communications Based on Compressive Sensing: A Survey

    Get PDF
    IEEE Compressive sensing (CS) has become a popular signal processing technique and has extensive applications in numerous fields such as wireless communications, image processing, magnetic resonance imaging, remote sensing imaging, and anology to information conversion, since it can realize simultaneous sampling and compression. In the information security field, secure CS has received much attention due to the fact that CS can be regarded as a cryptosystem to attain simultaneous sampling, compression and encryption when maintaining the secret measurement matrix. Considering that there are increasing works focusing on secure wireless communications based on CS in recent years, we produce a detailed review for the state-of-the-art in this paper. To be specific, the survey proceeds with two phases. The first phase reviews the security aspects of CS according to different types of random measurement matrices such as Gaussian matrix, circulant matrix, and other special random matrices, which establishes theoretical foundations for applications in secure wireless communications. The second phase reviews the applications of secure CS depending on communication scenarios such as wireless wiretap channel, wireless sensor network, internet of things, crowdsensing, smart grid, and wireless body area networks. Finally, some concluding remarks are given

    DEVELOPING A TRANSMISSION-EFFICIENT CLUSTERING METHOD FOR WIRELESS SENSOR NETWORKS USING HYBRID COMPRESSIVE SENSING

    Get PDF
    Compressive sensing (CS) can reduce the number of data transmissions and balance the traffic load throughout networks. However, the total number of transmissions for data collection by using pure CS is still large. The hybrid method of using CS was proposed to reduce the number of transmissions in sensor networks. However, the previous works use the CS method on routing trees. In this paper, we propose a clustering method that uses hybrid CS for sensor networks. The sensor nodes are organized into clusters. Within a cluster, nodes transmit data to cluster head (CH) without using CS. CHs use CS to transmit data to sink. We first propose an analytical model that studies the relationship between the size of clusters and number of transmissions in the hybrid CS method, aiming at finding the optimal size of clusters that can lead to minimum number of transmissions. Then, we propose a centralized clustering algorithm based on the results obtained from the analytical model. Finally, we present a distributed implementation of the clustering method. Extensive simulations confirm that our method can reduce the number of transmissions significantly

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial
    corecore