97 research outputs found

    An adiabatic charge pump based charge recycling design style

    Get PDF
    A typical CMOS gate draws charge equal to C[subscript L]Vdd2 from the power supply (Vdd) where C[subscript L] is the load capacitance. Half of the energy is dissipated in the pull-up p-type network, and the other half is dissipated in the pull-down n-type network. Adiabatic CMOS circuit reduces the dissipated energy by providing the charge at a rate significantly lower than the inherent RC delay of the gate. The charge can also be recovered with an RLC oscillator based power supply. However, the two main problems with adiabatic design style are the design of a high frequency RLC oscillator for the power supply, and the need to slow down the rate of charge supply for lower energy. This reduction in speed of operation renders this adiabatic technique inapplicable in certain situations. A new approach incorporating an adiabatic charge pump that moves the slower adiabatic components away from the critical path of the logic is proposed in this work. The adiabatic delays of a charge pump are overlapped with the computing path logic delays. Hence, the proposed charge pump based recycling technique is especially effective for pipelined datapath computations (digital signal processing, DSP, is such a domain) where timing considerations are important. Also the proposed design style does not interfere with the critical path of the system, and hence the delay introduced by this scheme does not reduce the overall computational speed. In this work, we propose one implementation schema that involves tapping the ground-bound charge in a capacitor (virtual ground) and using an adiabatic charge-pump circuit to feed internal virtual power supplies. As the design relies on leakage charge to generate virtual power supplies, it is most effective in large circuits that undergo considerable switching activity resulting in substantial charge tapping by the proposed scheme. The proposed method has been implemented in DSP applications like FIR filter, DCT/IDCT filters and FFT filters. Simulations results in SPICE indicate that the proposed scheme reduces energy consumption in these DSP circuits by as much as 18% with no loss in performance, paving way for a new approach towards conserving energy in complex digital systems

    Efficient VLSI Architectures for Image Compression Algorithms

    Get PDF
    An image, in its original form, contains huge amount of data which demands not only large amount of memory requirements for its storage but also causes inconvenient transmission over limited bandwidth channel. Image compression reduces the data from the image in either lossless or lossy way. While lossless image compression retrieves the original image data completely, it provides very low compression. Lossy compression techniques compress the image data in variable amount depending on the quality of image required for its use in particular application area. It is performed in steps such as image transformation, quantization and entropy coding. JPEG is one of the most used image compression standard which uses discrete cosine transform (DCT) to transform the image from spatial to frequency domain. An image contains low visual information in its high frequencies for which heavy quantization can be done in order to reduce the size in the transformed representation. Entropy coding follows to further reduce the redundancy in the transformed and quantized image data. Real-time data processing requires high speed which makes dedicated hardware implementation most preferred choice. The hardware of a system is favored by its lowcost and low-power implementation. These two factors are also the most important requirements for the portable devices running on battery such as digital camera. Image transform requires very high computations and complete image compression system is realized through various intermediate steps between transform and final bit-streams. Intermediate stages require memory to store intermediate results. The cost and power of the design can be reduced both in efficient implementation of transforms and reduction/removal of intermediate stages by employing different techniques. The proposed research work is focused on the efficient hardware implementation of transform based image compression algorithms by optimizing the architecture of the system. Distribute arithmetic (DA) is an efficient approach to implement digital signal processing algorithms. DA is realized by two different ways, one through storage of precomputed values in ROMs and another without ROM requirements. ROM free DA is more efficient. For the image transform, architectures of one dimensional discrete Hartley transform (1-D DHT) and one dimensional DCT (1-D DCT) have been optimized using ROM free DA technique. Further, 2-D separable DHT (SDHT) and 2-D DCT architectures have been implemented in row-column approach using two 1-D DHT and two 1-D DCT respectively. A finite state machine (FSM) based architecture from DCT to quantization has been proposed using the modified quantization matrix in JPEG image compression which requires no memory in storage of quantization table and DCT coefficients. In addition, quantization is realized without use of multipliers that require more area and are power hungry. For the entropy encoding, Huffman coding is hardware efficient than arithmetic coding. The use of Huffman code table further simplifies the implementation. The strategies have been used for the significant reduction of memory bits in storage of Huffman code table and the complete Huffman coding architecture encodes the transformed coefficients one bit per clock cycle. Direct implementation algorithm of DCT has the advantage that it is free of transposition memory to store intermediate 1-D DCT. Although recursive algorithms have been a preferred method, these algorithms have low accuracy resulting in image quality degradation. A non-recursive equation for the direct computation of DCT coefficients have been proposed and implemented in both 0.18 µm ASIC library as well as FPGA. It can compute DCT coefficients in any order and all intermediate computations are free of fractions and hence very high image quality has been obtained in terms of PSNR. In addition, one multiplier and one register bit-width need to be changed for increasing the accuracy resulting in very low hardware overhead. The architecture implementation has been done to obtain zig-zag ordered DCT coefficients. The comparison results show that this implementation has less area in terms of gate counts and less power consumption than the existing DCT implementations. Using this architecture, the complete JPEG image compression system has been implemented which has Huffman coding module, one multiplier and one register as the only additional modules. The intermediate stages (DCT to Huffman encoding) are free of memory, hence efficient architecture is obtained

    Ultra Low Power Digital Circuit Design for Wireless Sensor Network Applications

    Get PDF
    Ny forskning innenfor feltet trådløse sensornettverk åpner for nye og innovative produkter og løsninger. Biomedisinske anvendelser er blant områdene med størst potensial og det investeres i dag betydelige beløp for å bruke denne teknologien for å gjøre medisinsk diagnostikk mer effektiv samtidig som man åpner for fjerndiagnostikk basert på trådløse sensornoder integrert i et ”helsenett”. Målet er å forbedre tjenestekvalitet og redusere kostnader samtidig som brukerne skal oppleve forbedret livskvalitet som følge av økt trygghet og mulighet for å tilbringe mest mulig tid i eget hjem og unngå unødvendige sykehusbesøk og innleggelser. For å gjøre dette til en realitet er man avhengige av sensorelektronikk som bruker minst mulig energi slik at man oppnår tilstrekkelig batterilevetid selv med veldig små batterier. I sin avhandling ” Ultra Low power Digital Circuit Design for Wireless Sensor Network Applications” har PhD-kandidat Farshad Moradi fokusert på nye løsninger innenfor konstruksjon av energigjerrig digital kretselektronikk. Avhandlingen presenterer nye løsninger både innenfor aritmetiske og kombinatoriske kretser, samtidig som den studerer nye statiske minneelementer (SRAM) og alternative minnearkitekturer. Den ser også på utfordringene som oppstår når silisiumteknologien nedskaleres i takt med mikroprosessorutviklingen og foreslår løsninger som bidrar til å gjøre kretsløsninger mer robuste og skalerbare i forhold til denne utviklingen. De viktigste konklusjonene av arbeidet er at man ved å introdusere nye konstruksjonsteknikker både er i stand til å redusere energiforbruket samtidig som robusthet og teknologiskalerbarhet øker. Forskningen har vært utført i samarbeid med Purdue University og vært finansiert av Norges Forskningsråd gjennom FRINATprosjektet ”Micropower Sensor Interface in Nanometer CMOS Technology”

    DESIGN AND IMPLEMENTATION OF AN EFFICIENT IMAGE COMPRESSOR FOR WIRELESS CAPSULE ENDOSCOPY

    Get PDF
    Capsule endoscope (CE) is a diagnosis tool for gastrointestinal (GI) diseases. Area and power are the two important parameters for the components used in CE. To optimize these two parameters, an efficient image compressor is desired. The mage compressor should be able to sufficiently compress the captured images to save transmission power, retain reconstruction quality for accurate diagnosis and consumes small physical area. To meet all of the above mentioned conditions, we have studied several transform coding based lossy compression algorithms in this thesis. The core computation tool of these compressors is the Discrete Cosine Transform (DCT) kernel. The DCT accumulates the distributed energy of an image in a small centralized area and supports more compression with non-significant quality degradation. The conventional DCT requires complex floating point multiplication, which is not feasible for wireless capsule endoscopy (WCE) application because of its high implementation cost. So, an integer version of the DCT, known as iDCT, is used in this work. Several low complexity iDCTs along with different color space converters (such as, YUV, YEF, YCgCo) were combined to obtain the desired compression level. At the end a quantization stage is used in the proposed algorithm to achieve further compression. We have analyzed the endoscopic images and based on their properties, three quantization matrix sets have been proposed for three color planes. The algorithms are verified at both software (using MATLAB) and hardware (using HDL Verilog coding) levels. In the end, the performance of all the proposed schemes has been evaluated for optimal operation in WCE application

    An efficient telemetry system for restoring sight

    Get PDF
    PhD ThesisThe human nervous system can be damaged as a result of disease or trauma, causing conditions such as Parkinson’s disease. Most people try pharmaceuticals as a primary method of treatment. However, drugs cannot restore some cases, such as visual disorder. Alternatively, this impairment can be treated with electronic neural prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not efficient and only people with retinal pigmentosa benefit from it. In such treatments, stimulation of the nervous system can be achieved by electrical or optical means. In the latter case, the nerves need to be rendered light sensitive via genetic means (optogenetics). High radiance photonic devices are then required to deliver light to the target tissue. Such optical approaches hold the potential to be more effective while causing less harm to the brain tissue. As these devices are implanted in tissue, wireless means need to be used to communicate with them. For this, IEEE 802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most advanced electronic devices, and are also safe and secure. Also, wireless power delivery can operate the implanted device. In this thesis, a fully wireless and efficient visual cortical stimulator was designed to restore the sight of the blind. This system is likely to address 40% of the causes of blindness. In general, the system can be divided into two parts, hardware and software. Hardware parts include a wireless power transfer design, the communication device, power management, a processor and the control unit, and the 3D design for assembly. The software part contains the image simplification, image compression, data encoding, pulse modulation, and the control system. Real-time video streaming is processed and sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. After retrieving the compressed data, the processed data are again sent to the implanted electrode/optrode to stimulate the brain’s nerve cells

    Power Efficient Data Compression Hardware for Wearable and Wireless Biomedical Sensing Devices

    Get PDF
    This thesis aims to verify a possible benefit lossless data compression and reduction techniques can bring to a wearable and wireless biomedical device, which is anticipated to be system power saving. A wireless transceiver is one of the main contributors to the system power of a wireless biomedical sensing device, and reducing the data transmitted by the transceiver with a minimum hardware cost can therefore help to save the power. This thesis is going to investigate the impact of the data compression and reduction on the system power of a wearable and wireless biomedical device and trying to find a proper compression technique that can achieve power saving of the device. The thesis first examines some widely used lossy and lossless data compression and reduction techniques for biomedical data, especially EEG data. Then it introduces a novel lossless biomedical data compression technique designed for this research called Log2 sub-band encoding. The thesis then moves on to the biomedical data compression evaluation of the Log2 sub-band encoding and an existing 2-stage technique consisting of the DPCM and the Huffman encoding. The next part of this thesis explores the signal classification potential of the Log2 sub-band encoding. It was found that some of the signal features extracted as a by-product during the Log2 sub-band encoding process could be used to detect certain signal events like epileptic seizures, with a proper method. The final section of the thesis focuses on the power analysis of the hardware implementation of two compression techniques referred to earlier, as well as the system power analysis. The results show that the Log2 sub-band is comparable and even superior to the 2-stage technique in terms of data compression and power performance. The system power requirement of an EEG signal recorder that has the Log2 sub-band implemented is significantly reduced
    corecore