175 research outputs found

    Hybrid ant colony system algorithm for static and dynamic job scheduling in grid computing

    Get PDF
    Grid computing is a distributed system with heterogeneous infrastructures. Resource management system (RMS) is one of the most important components which has great influence on the grid computing performance. The main part of RMS is the scheduler algorithm which has the responsibility to map submitted tasks to available resources. The complexity of scheduling problem is considered as a nondeterministic polynomial complete (NP-complete) problem and therefore, an intelligent algorithm is required to achieve better scheduling solution. One of the prominent intelligent algorithms is ant colony system (ACS) which is implemented widely to solve various types of scheduling problems. However, ACS suffers from stagnation problem in medium and large size grid computing system. ACS is based on exploitation and exploration mechanisms where the exploitation is sufficient but the exploration has a deficiency. The exploration in ACS is based on a random approach without any strategy. This study proposed four hybrid algorithms between ACS, Genetic Algorithm (GA), and Tabu Search (TS) algorithms to enhance the ACS performance. The algorithms are ACS(GA), ACS+GA, ACS(TS), and ACS+TS. These proposed hybrid algorithms will enhance ACS in terms of exploration mechanism and solution refinement by implementing low and high levels hybridization of ACS, GA, and TS algorithms. The proposed algorithms were evaluated against twelve metaheuristic algorithms in static (expected time to compute model) and dynamic (distribution pattern) grid computing environments. A simulator called ExSim was developed to mimic the static and dynamic nature of the grid computing. Experimental results show that the proposed algorithms outperform ACS in terms of best makespan values. Performance of ACS(GA), ACS+GA, ACS(TS), and ACS+TS are better than ACS by 0.35%, 2.03%, 4.65% and 6.99% respectively for static environment. For dynamic environment, performance of ACS(GA), ACS+GA, ACS+TS, and ACS(TS) are better than ACS by 0.01%, 0.56%, 1.16%, and 1.26% respectively. The proposed algorithms can be used to schedule tasks in grid computing with better performance in terms of makespan

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)

    QoS-aware predictive workflow scheduling

    Full text link
    This research places the basis of QoS-aware predictive workflow scheduling. This research novel contributions will open up prospects for future research in handling complex big workflow applications with high uncertainty and dynamism. The results from the proposed workflow scheduling algorithm shows significant improvement in terms of the performance and reliability of the workflow applications

    DATA REPLICATION IN DISTRIBUTED SYSTEMS USING OLYMPIAD OPTIMIZATION ALGORITHM

    Get PDF
    Achieving timely access to data objects is a major challenge in big distributed systems like the Internet of Things (IoT) platforms. Therefore, minimizing the data read and write operation time in distributed systems has elevated to a higher priority for system designers and mechanical engineers. Replication and the appropriate placement of the replicas on the most accessible data servers is a problem of NP-complete optimization. The key objectives of the current study are minimizing the data access time, reducing the quantity of replicas, and improving the data availability. The current paper employs the Olympiad Optimization Algorithm (OOA) as a novel population-based and discrete heuristic algorithm to solve the replica placement problem which is also applicable to other fields such as mechanical and computer engineering design problems. This discrete algorithm was inspired by the learning process of student groups who are preparing for the Olympiad exams. The proposed algorithm, which is divide-and-conquer-based with local and global search strategies, was used in solving the replica placement problem in a standard simulated distributed system. The 'European Union Database' (EUData) was employed to evaluate the proposed algorithm, which contains 28 nodes as servers and a network architecture in the format of a complete graph. It was revealed that the proposed technique reduces data access time by 39% with around six replicas, which is vastly superior to the earlier methods. Moreover, the standard deviation of the results of the algorithm's different executions is approximately 0.0062, which is lower than the other techniques' standard deviation within the same experiments

    Hybridization of enhanced ant colony system and Tabu search algorithm for packet routing in wireless sensor network

    Get PDF
    In Wireless Sensor Network (WSN), high transmission time occurs when search agent focuses on the same sensor nodes, while local optima problem happens when agent gets trapped in a blind alley during searching. Swarm intelligence algorithms have been applied in solving these problems including the Ant Colony System (ACS) which is one of the ant colony optimization variants. However, ACS suffers from local optima and stagnation problems in medium and large sized environments due to an ineffective exploration mechanism. This research proposes a hybridization of Enhanced ACS and Tabu Search (EACS(TS)) algorithm for packet routing in WSN. The EACS(TS) selects sensor nodes with high pheromone values which are calculated based on the residual energy and current pheromone value of each sensor node. Local optima is prevented by marking the node that has no potential neighbour node as a Tabu node and storing it in the Tabu list. Local pheromone update is performed to encourage exploration to other potential sensor nodes while global pheromone update is applied to encourage the exploitation of optimal sensor nodes. Experiments were performed in a simulated WSN environment supported by a Routing Modelling Application Simulation Environment (RMASE) framework to evaluate the performance of EACS(TS). A total of 6 datasets were deployed to evaluate the effectiveness of the proposed algorithm. Results showed that EACS(TS) outperformed in terms of success rate, packet loss, latency, and energy efficiency when compared with single swarm intelligence routing algorithms which are Energy-Efficient Ant-Based Routing (EEABR), BeeSensor and Termite-hill. Better performances were also achieved for success rate, throughput, and latency when compared to other hybrid routing algorithms such as Fish Swarm Ant Colony Optimization (FSACO), Cuckoo Search-based Clustering Algorithm (ICSCA), and BeeSensor-C. The outcome of this research contributes an optimized routing algorithm for WSN. This will lead to a better quality of service and minimum energy utilization

    Scientific Workflow Scheduling for Cloud Computing Environments

    Get PDF
    The scheduling of workflow applications consists of assigning their tasks to computer resources to fulfill a final goal such as minimizing total workflow execution time. For this reason, workflow scheduling plays a crucial role in efficiently running experiments. Workflows often have many discrete tasks and the number of different task distributions possible and consequent time required to evaluate each configuration quickly becomes prohibitively large. A proper solution to the scheduling problem requires the analysis of tasks and resources, production of an accurate environment model and, most importantly, the adaptation of optimization techniques. This study is a major step toward solving the scheduling problem by not only addressing these issues but also optimizing the runtime and reducing monetary cost, two of the most important variables. This study proposes three scheduling algorithms capable of answering key issues to solve the scheduling problem. Firstly, it unveils BaRRS, a scheduling solution that exploits parallelism and optimizes runtime and monetary cost. Secondly, it proposes GA-ETI, a scheduler capable of returning the number of resources that a given workflow requires for execution. Finally, it describes PSO-DS, a scheduler based on particle swarm optimization to efficiently schedule large workflows. To test the algorithms, five well-known benchmarks are selected that represent different scientific applications. The experiments found the novel algorithms solutions substantially improve efficiency, reducing makespan by 11% to 78%. The proposed frameworks open a path for building a complete system that encompasses the capabilities of a workflow manager, scheduler, and a cloud resource broker in order to offer scientists a single tool to run computationally intensive applications

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    Clustering Arabic Tweets for Sentiment Analysis

    Get PDF
    The focus of this study is to evaluate the impact of linguistic preprocessing and similarity functions for clustering Arabic Twitter tweets. The experiments apply an optimized version of the standard K-Means algorithm to assign tweets into positive and negative categories. The results show that root-based stemming has a significant advantage over light stemming in all settings. The Averaged Kullback-Leibler Divergence similarity function clearly outperforms the Cosine, Pearson Correlation, Jaccard Coefficient and Euclidean functions. The combination of the Averaged Kullback-Leibler Divergence and root-based stemming achieved the highest purity of 0.764 while the second-best purity was 0.719. These results are of importance as it is contrary to normal-sized documents where, in many information retrieval applications, light stemming performs better than root-based stemming and the Cosine function is commonly used

    Clustering Arabic Tweets for Sentiment Analysis

    Get PDF
    The focus of this study is to evaluate the impact of linguistic preprocessing and similarity functions for clustering Arabic Twitter tweets. The experiments apply an optimized version of the standard K-Means algorithm to assign tweets into positive and negative categories. The results show that root-based stemming has a significant advantage over light stemming in all settings. The Averaged Kullback-Leibler Divergence similarity function clearly outperforms the Cosine, Pearson Correlation, Jaccard Coefficient and Euclidean functions. The combination of the Averaged Kullback-Leibler Divergence and root-based stemming achieved the highest purity of 0.764 while the second-best purity was 0.719. These results are of importance as it is contrary to normal-sized documents where, in many information retrieval applications, light stemming performs better than root-based stemming and the Cosine function is commonly used
    corecore