23 research outputs found

    Learning automata and sigma imperialist competitive algorithm for optimization of single and multi-objective functions

    Get PDF
    Evolutionary Algorithms (EA) consist of several heuristics which are able to solve optimisation tasks by imitating some aspects of natural evolution. Two widely-used EAs, namely Harmony Search (HS) and Imperialist Competitive Algorithm (ICA), are considered for improving single objective EA and Multi Objective EA (MOEA), respectively. HS is popular because of its speed and ICA has the ability for escaping local optima, which is an important criterion for a MOEA. In contrast, both algorithms have suffered some shortages. The HS algorithm could be trapped in local optima if its parameters are not tuned properly. This shortage causes low convergence rate and high computational time. In ICA, there is big obstacle that impedes ICA from becoming MOEA. ICA cannot be matched with crowded distance method which produces qualitative value for MOEAs, while ICA needs quantitative value to determine power of each solution. This research proposes a learnable EA, named learning automata harmony search (LAHS). The EA employs a learning automata (LA) based approach to ensure that HS parameters are learnable. This research also proposes a new MOEA based on ICA and Sigma method, named Sigma Imperialist Competitive Algorithm (SICA). Sigma method provides a mechanism to measure the solutions power based on their quantity value. The proposed LAHS and SICA algorithms are tested on wellknown single objective and multi objective benchmark, respectively. Both LAHS and MOICA show improvements in convergence rate and computational time in comparison to the well-known single EAs and MOEAs

    A Comprehensive Survey on Routing and Security in Mobile Wireless Sensor Networks

    Get PDF
    With the continuous advances in mobile wirelesssensor networks (MWSNs), the research community hasresponded to the challenges and constraints in the design of thesenetworks by proposing efficient routing protocols that focus onparticular performance metrics such as residual energy utilization,mobility, topology, scalability, localization, data collection routing,Quality of Service (QoS), etc. In addition, the introduction ofmobility in WSN has brought new challenges for the routing,stability, security, and reliability of WSNs. Therefore, in thisarticle, we present a comprehensive and meticulous investigationin the routing protocols and security challenges in the theory ofMWSNs which was developed in recent years

    Enhanced non-parametric sequence learning scheme for internet of things sensory data in cloud infrastructure

    Get PDF
    The Internet of Things (IoT) Cloud is an emerging technology that enables machine-to-machine, human-to-machine and human-to-human interaction through the Internet. IoT sensor devices tend to generate sensory data known for their dynamic and heterogeneous nature. Hence, it makes it elusive to be managed by the sensor devices due to their limited computation power and storage space. However, the Cloud Infrastructure as a Service (IaaS) leverages the limitations of the IoT devices by making its computation power and storage resources available to execute IoT sensory data. In IoT-Cloud IaaS, resource allocation is the process of distributing optimal resources to execute data request tasks that comprise data filtering operations. Recently, machine learning, non-heuristics, multi-objective and hybrid algorithms have been applied for efficient resource allocation to execute IoT sensory data filtering request tasks in IoT-enabled Cloud IaaS. However, the filtering task is still prone to some challenges. These challenges include global search entrapment of event and error outlier detection as the dimension of the dataset increases in size, the inability of missing data recovery for effective redundant data elimination and local search entrapment that leads to unbalanced workloads on available resources required for task execution. In this thesis, the enhancement of Non-Parametric Sequence Learning (NPSL), Perceptually Important Point (PIP) and Efficient Energy Resource Ranking- Virtual Machine Selection (ERVS) algorithms were proposed. The Non-Parametric Sequence-based Agglomerative Gaussian Mixture Model (NPSAGMM) technique was initially utilized to improve the detection of event and error outliers in the global space as the dimension of the dataset increases in size. Then, Perceptually Important Points K-means-enabled Cosine and Manhattan (PIP-KCM) technique was employed to recover missing data to improve the elimination of duplicate sensed data records. Finally, an Efficient Resource Balance Ranking- based Glow-warm Swarm Optimization (ERBV-GSO) technique was used to resolve the local search entrapment for near-optimal solutions and to reduce workload imbalance on available resources for task execution in the IoT-Cloud IaaS platform. Experiments were carried out using the NetworkX simulator and the results of N-PSAGMM, PIP-KCM and ERBV-GSO techniques with N-PSL, PIP, ERVS and Resource Fragmentation Aware (RF-Aware) algorithms were compared. The experimental results showed that the proposed NPSAGMM, PIP-KCM, and ERBV-GSO techniques produced a tremendous performance improvement rate based on 3.602%/6.74% Precision, 9.724%/8.77% Recall, 5.350%/4.42% Area under Curve for the detection of event and error outliers. Furthermore, the results indicated an improvement rate of 94.273% F1-score, 0.143 Reduction Ratio, and with minimum 0.149% Root Mean Squared Error for redundant data elimination as well as the minimum number of 608 Virtual Machine migrations, 47.62% Resource Utilization and 41.13% load balancing degree for the allocation of desired resources deployed to execute sensory data filtering tasks respectively. Therefore, the proposed techniques have proven to be effective for improving the load balancing of allocating the desired resources to execute efficient outlier (Event and Error) detection and eliminate redundant data records in the IoT-based Cloud IaaS Infrastructure

    An efficient genetic algorithm for large-scale planning of robust industrial wireless networks

    Get PDF
    An industrial indoor environment is harsh for wireless communications compared to an office environment, because the prevalent metal easily causes shadowing effects and affects the availability of an industrial wireless local area network (IWLAN). On the one hand, it is costly, time-consuming, and ineffective to perform trial-and-error manual deployment of wireless nodes. On the other hand, the existing wireless planning tools only focus on office environments such that it is hard to plan IWLANs due to the larger problem size and the deployed IWLANs are vulnerable to prevalent shadowing effects in harsh industrial indoor environments. To fill this gap, this paper proposes an overdimensioning model and a genetic algorithm based over-dimensioning (GAOD) algorithm for deploying large-scale robust IWLANs. As a progress beyond the state-of-the-art wireless planning, two full coverage layers are created. The second coverage layer serves as redundancy in case of shadowing. Meanwhile, the deployment cost is reduced by minimizing the number of access points (APs); the hard constraint of minimal inter-AP spatial paration avoids multiple APs covering the same area to be simultaneously shadowed by the same obstacle. The computation time and occupied memory are dedicatedly considered in the design of GAOD for large-scale optimization. A greedy heuristic based over-dimensioning (GHOD) algorithm and a random OD algorithm are taken as benchmarks. In two vehicle manufacturers with a small and large indoor environment, GAOD outperformed GHOD with up to 20% less APs, while GHOD outputted up to 25% less APs than a random OD algorithm. Furthermore, the effectiveness of this model and GAOD was experimentally validated with a real deployment system

    ArduSim: Accurate and real-time multicopter simulation

    Full text link
    [EN] As the popularity and the number of Unmanned Aerial Vehicles (UAVs) increases, new protocols are needed to coordinate UAVs when flying autonomously, and to avoid that these UAVs collide with each other. Directly testing such novel protocols on real UAVs is a complex procedure that requires investing much time, money and research effort. Hence, it becomes necessary to have the possibility to first test different solutions using simulation. Unfortunately, existing tools present significant limitations: some of them only simulate accurately the flight behavior of one UAV, while some other simulators can manage several UAVs simultaneously, but not in real-time, thus loosing accuracy regarding the mobility pattern of the UAV. In this work we address such problem by introducing ArduSim, a novel simulator that allows controlling in soft real-time the flight and communications of multiple UAVs, being the developed protocols directly portable to real devices. The contributions of this work include: (i) the ArduSim simulation platform, which allows realistic simulation and control of multiple UAVs simultaneously, offering functionalities not provided by existing alternatives; (ii) a model for the WiFi communications link between UAVs, based on real experiments, and that is integrated into ArduSim itself; and (iii) a thorough study of the scalability performance of our simulator.This work was supported by the Ministerio de Economia y Competitividad for the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a Retos de la Sociedad, Proyecto I+D+I SMART@CARPHONE: Integracion del smartphone y el vehiculo para conectar conductores, sensores y entorno a traves de una arquitectura de servicios funcionales" (grant number TEC2014-52690-R), and the Universitat Politecnica de Valencia (UPV) under program "Contratos Pre-doctorales para la Formacion de Personal Investigador (FPI)" (grant number 0060100000).Fabra Collado, FJ.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2018). ArduSim: Accurate and real-time multicopter simulation. Simulation Modelling Practice and Theory. 87:170-190. https://doi.org/10.1016/j.simpat.2018.06.009S1701908

    Evolutionary Robot Swarms Under Real-World Constraints

    Get PDF
    Tese de doutoramento em Engenharia Electrotécnica e de Computadores, na especialidade de Automação e Robótica, apresentada ao Departamento de Engenharia Electrotécnica e de Computadores da Faculdade de Ciências e Tecnologia da Universidade de CoimbraNas últimas décadas, vários cientistas e engenheiros têm vindo a estudar as estratégias provenientes da natureza. Dentro das arquiteturas biológicas, as sociedades que vivem em enxames revelam que agentes simplistas, tais como formigas ou pássaros, são capazes de realizar tarefas complexas usufruindo de mecanismos de cooperação. Estes sistemas abrangem todas as condições necessárias para a sobrevivência, incorporando comportamentos de cooperação, competição e adaptação. Na “batalha” sem fim em prol do progresso dos mecanismos artificiais desenvolvidos pelo homem, a ciência conseguiu simular o primeiro comportamento em enxame no final dos anos oitenta. Desde então, muitas outras áreas, entre as quais a robótica, beneficiaram de mecanismos de tolerância a falhas inerentes da inteligência coletiva de enxames. A área de investigação deste estudo incide na robótica de enxame, consistindo num domínio particular dos sistemas robóticos cooperativos que incorpora os mecanismos de inteligência coletiva de enxames na robótica. Mais especificamente, propõe-se uma solução completa de robótica de enxames a ser aplicada em contexto real. Nesta ótica, as operações de busca e salvamento foram consideradas como o caso de estudo principal devido ao nível de complexidade associado às mesmas. Tais operações ocorrem tipicamente em cenários dinâmicos de elevadas dimensões, com condições adversas que colocam em causa a aplicabilidade dos sistemas robóticos cooperativos. Este estudo centra-se nestes problemas, procurando novos desafios que não podem ser ultrapassados através da simples adaptação da literatura da especialidade em algoritmos de enxame, planeamento, controlo e técnicas de tomada de decisão. As contribuições deste trabalho sustentam-se em torno da extensão do método Particle Swarm Optimization (PSO) aplicado a sistemas robóticos cooperativos, denominado de Robotic Darwinian Particle Swarm Optimization (RDPSO). O RDPSO consiste numa arquitetura robótica de enxame distribuída que beneficia do particionamento dinâmico da população de robôs utilizando mecanismos evolucionários de exclusão social baseados na sobrevivência do mais forte de Darwin. No entanto, apesar de estar assente no caso de estudo do RDPSO, a aplicabilidade dos conceitos aqui propostos não se encontra restrita ao mesmo, visto que todos os algoritmos parametrizáveis de enxame de robôs podem beneficiar de uma abordagem idêntica. Os fundamentos em torno do RDPSO são introduzidos, focando-se na dinâmica dos robôs, nos constrangimentos introduzidos pelos obstáculos e pela comunicação, e nas suas propriedades evolucionárias. Considerando a colocação inicial dos robôs no ambiente como algo fundamental para aplicar sistemas de enxames em aplicações reais, é assim introduzida uma estratégia de colocação de robôs realista. Para tal, a população de robôs é dividida de forma hierárquica, em que são utilizadas plataformas mais robustas para colocar as plataformas de enxame no cenário de forma autónoma. Após a colocação dos robôs no cenário, é apresentada uma estratégia para permitir a criação e manutenção de uma rede de comunicação móvel ad hoc com tolerância a falhas. Esta estratégia não considera somente a distância entre robôs, mas também a qualidade do nível de sinal rádio frequência, redefinindo assim a sua aplicabilidade em cenários reais. Os aspetos anteriormente mencionados estão sujeitos a uma análise detalhada do sistema de comunicação inerente ao algoritmo, para atingir uma implementação mais escalável do RDPSO a cenários de elevada complexidade. Esta elevada complexidade inerente à dinâmica dos cenários motivaram a ultimar o desenvolvimento do RDPSO, integrando para o efeito um mecanismo adaptativo baseado em informação contextual (e.g., nível de atividade do grupo). Face a estas considerações, o presente estudo pode contribuir para expandir o estado-da-arte em robótica de enxame com algoritmos inovadores aplicados em contexto real. Neste sentido, todos os métodos propostos foram extensivamente validados e comparados com alternativas, tanto em simulação como com robôs reais. Para além disso, e dadas as limitações destes (e.g., número limitado de robôs, cenários de dimensões limitadas, constrangimentos reais limitados), este trabalho contribui ainda para um maior aprofundamento do estado-da-arte, onde se propõe um modelo macroscópico capaz de capturar a dinâmica inerente ao RDPSO e, até certo ponto, estimar analiticamente o desempenho coletivo dos robôs perante determinada tarefa. Em suma, esta investigação pode ter aplicabilidade prática ao colmatar a lacuna que se faz sentir no âmbito das estratégias de enxames de robôs em contexto real e, em particular, em cenários de busca e salvamento.Over the past decades, many scientists and engineers have been studying nature’s best and time-tested patterns and strategies. Within the existing biological architectures, swarm societies revealed that relatively unsophisticated agents with limited capabilities, such as ants or birds, were able to cooperatively accomplish complex tasks necessary for their survival. Those simplistic systems embrace all the conditions necessary to survive, thus embodying cooperative, competitive and adaptive behaviours. In the never-ending battle to advance artificial manmade mechanisms, computer scientists simulated the first swarm behaviour designed to mimic the flocking behaviour of birds in the late eighties. Ever since, many other fields, such as robotics, have benefited from the fault-tolerant mechanism inherent to swarm intelligence. The area of research presented in this Ph.D. Thesis focuses on swarm robotics, which is a particular domain of multi-robot systems (MRS) that embodies the mechanisms of swarm intelligence into robotics. More specifically, this Thesis proposes a complete swarm robotic solution that can be applied to real-world missions. Although the proposed methods do not depend on any particular application, search and rescue (SaR) operations were considered as the main case study due to their inherent level of complexity. Such operations often occur in highly dynamic and large scenarios, with harsh and faulty conditions, that pose several problems to MRS applicability. This Thesis focuses on these problems raising new challenges that cannot be handled appropriately by simple adaptation of state-of-the-art swarm algorithms, planning, control and decision-making techniques. The contributions of this Thesis revolve around an extension of the Particle Swarm Optimization (PSO) to MRS, denoted as Robotic Darwinian Particle Swarm Optimization (RDPSO). The RDPSO is a distributed swarm robotic architecture that benefits from the dynamical partitioning of the whole swarm of robots by means of an evolutionary social exclusion mechanism based on Darwin’s survival-of-the-fittest. Nevertheless, although currently applied solely to the RDPSO case study, the applicability of all concepts herein proposed is not restricted to it, since all parameterized swarm robotic algorithms may benefit from a similar approach The RDPSO is then proposed and used to devise the applicability of novel approaches. The fundamentals around the RDPSO are introduced by focusing on robots’ dynamics, obstacle avoidance, communication constraints and its evolutionary properties. Afterwards, taking the initial deployment of robots within the environment as a basis for applying swarm robotics systems into real-world applications, the development of a realistic deployment strategy is proposed. For that end, the population of robots is hierarchically divided, wherein larger support platforms autonomously deploy smaller exploring platforms in the scenario, while considering communication constraints and obstacles. After the deployment, a way of ensuring a fault-tolerant multi-hop mobile ad hoc communication network (MANET) is introduced to explicitly exchange information needed in a collaborative realworld task execution. Such strategy not only considers the maximum communication range between robots, but also the minimum signal quality, thus refining the applicability to real-world context. This is naturally followed by a deep analysis of the RDPSO communication system, describing the dynamics of the communication data packet structure shared between teammates. Such procedure is a first step to achieving a more scalable implementation by optimizing the communication procedure between robots. The highly dynamic characteristics of real-world applications motivated us to ultimate the RDPSO development with an adaptive strategy based on a set of context-based evaluation metrics. This thesis contributes to the state-of-the-art in swarm robotics with novel algorithms for realworld applications. All of the proposed approaches have been extensively validated in benchmarking tasks, in simulation, and with real robots. On top of that, and due to the limitations inherent to those (e.g., number of robots, scenario dimensions, real-world constraints), this Thesis further contributes to the state-of-the-art by proposing a macroscopic model able to capture the RDPSO dynamics and, to some extent, analytically estimate the collective performance of robots under a certain task. It is the author’s expectation that this Ph.D. Thesis may shed some light into bridging the reality gap inherent to the applicability of swarm strategies to real-world scenarios, and in particular to SaR operations.FCT - SFRH/BD /73382/201

    Exploiting semantic knowledge in swarm robotic systems for target searching

    Get PDF
    Robotic systems have long been used for search and rescue tasks in hazardous environments. The prevailing solutions which utilize delicate units for sensing and positioning show their reliance on globalized information when multiple robots are deployed. To employ multiple robots (especially swarm robots in this thesis) in a searching task, the local perceptual ability and local communication range demand a new strategy for environmental information recording and exchanging, to promote searching efficiencies of the robots. This thesis presents a semantic knowledge-based mechanism for environmental information storage and communication in swarm robotic systems. Human expert knowledge about the environment can be utilized by such a mechanism for promoting searching efficiency. Robots without the knowledge provided in advance could learn knowledge in a task-oriented way, and help other robots in the swarm find the target faster by sharing the knowledge

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    A study of search neighbourhood in the bees algorithm

    Get PDF
    The Bees Algorithm, a heuristic optimisation procedure that mimics bees foraging behaviour, is becoming more popular among swarm intelligence researchers. The algorithm involves neighbourhood and global search and is able to find promising solutions to complex multimodal optimisation problems. The purpose of neighbourhood search is to intensify the search effort around promising solutions, while global search is to enable avoidance of local optima. Despite numerous studies aimed at enhancing the Bees Algorithm, there have not been many attempts at studying neighbourhood search. This research investigated different kinds of neighbourhoods and their effects on neighbourhood search. First, the adaptive enlargement of the search neighbourhood was proposed. This idea was implemented in the Bees Algorithm and tested on a set of mathematical benchmarks. The modified algorithm was also tested on single objective engineering design problems. The experimental results obtained confirmed that the adaptive enlargement of the search neighbourhood improved the performance of the proposed algorithm. Normally, a symmetrical search neighbourhood is employed in the Bees Algorithm. As opposed to this practice, an asymmetrical search neighbourhood was tried in this work to determine the significance of neighbourhood symmetry. In addition to the mathematical benchmarks, the algorithm with an asymmetrical search neighbourhood was also tested on an engineering design problem. The analysis verified that under certain measurements of asymmetry, the proposed ii algorithm produced a similar performance as that of the Bees Algorithm. For this reason, it was concluded that users were free to employ either a symmetrical or an asymmetrical search neighbourhood in the Bees Algorithm. Finally, the combination of adaptive enlargement and reduction of the search neighbourhood was presented. In addition to the above mathematical benchmarks and engineering design problems, a multi-objective design optimisation exercise with constraints was selected to demonstrate the performance of the modified algorithm. The experimental results obtained showed that this combination was beneficial to the proposed algorithm.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore