363 research outputs found

    Cooperative Spectrum Sensing based on 1-bit Quantization in Cognitive Radio Networks

    Get PDF
    The wireless frequency spectrum is a very valuable resource in the field of communications. Over the years, different bands of the spectrum were licensed to various communications systems and standards. As a result, most of the easily accessible parts of it ended up being theoretically occupied. This made it somewhat difficult to accommodate new wireless technologies, especially with the rise of communications concepts such as the Machine to Machine (M2M) communications and the Internet of Things (IoT). It was necessary to find ways to make better use of wireless spectrum. Cognitive Radio is one concept that came into the light to tackle the problem of spectrum utilization. Various technical reports stated that the spectrum is in fact under-utilized. Many frequency bands are not heavily used over time, and some bands have low activity. Cognitive Radio (CR) Networks aim to exploit and opportunistically share the already licensed spectrum. The objective is to enable various kinds of communications while preserving the licensed parties' right to access the spectrum without interference. Cognitive radio networks have more than one approach to spectrum sharing. In interweave spectrum sharing scheme, cognitive radio devices look for opportunities in the spectrum, in frequency and over time. Therefore, and to find these opportunities, they employ what is known as spectrum sensing. In a spectrum sensing phase, the CR device scans certain parts of the spectrum to find the voids or white spaces in it. After that it exploits these voids to perform its data transmission, thus avoiding any interference with the licensed users. Spectrum sensing has various classifications and approaches. In this thesis, we will present a general review of the main spectrum sensing categories. Furthermore, we will discuss some of the techniques employed in each category including their respective advantages and disadvantages, in addition to some of the research work associated with them. Our focus will be on cooperative spectrum sensing, which is a popular research topic. In cooperative spectrum sensing, multiple CR devices collaborate in the spectrum sensing operation to enhance the performance in terms of detection accuracy. We will investigate the soft-information decision fusion approach in cooperative sensing. In this approach, the CR devices forward their spectrum sensing data to a central node, commonly known as a Fusion Center. At the fusion center, this data is combined to achieve a higher level of accuracy in determining the occupied parts and the empty parts of the spectrum while considering Rayleigh fading channels. Furthermore, we will address the issue of high power consumption due to the sampling process of a wide-band of frequencies at the Nyquist rate. We will apply the 1-bit Quantization technique in our work to tackle this issue. The simulation results show that the detection accuracy of a 1-bit quantized system is equivalent to a non-quantized system with only 2 dB less in Signal-to-Noise Ratio (SNR). Finally, we will shed some light on multiple antenna spectrum sensing, and compare its performance to the cooperative sensing

    Combined Soft Hard Cooperative Spectrum Sensing in Cognitive Radio Networks

    Get PDF
    Providing some techniques to enhance the performance of spectrum sensing in cognitive radio systems while accounting for the cost and bandwidth limitations in practical scenarios is the main objective of this thesis. We focus on an essential element of cooperative spectrum sensing (CSS) which is the data fusion that combines the sensing results to make the final decision. Exploiting the advantage of the superior performance of the soft schemes and the low bandwidth of the hard schemes by incorporating them in cluster based CSS networks is achieved in two different ways. First, a soft-hard combination is employed to propose a hierarchical cluster based spectrum sensing algorithm. The proposed algorithm maximizes the detection performances while satisfying the probability of false alarm constraint. Simulation results of the proposed algorithm are presented and compared with existing algorithms over the Nakagami fading channel. Moreover, the results show that the proposed algorithm outperforms the existing algorithms. In the second part, a low complexity soft-hard combination scheme is suggested by utilizing both one-bit and two-bit schemes to balance between the required bandwidth and the detection performance by taking into account that different clusters undergo different conditions. The scheme allocates a reliability factor proportional to the detection rate to each cluster to combine the results at the Fusion center (FC) by extracting the results of the reliable clusters. Numerical results obtained have shown that a superior detection performance and a minimum overhead can be achieved simultaneously by combining one bit and two schemes at the intra-cluster level while assigning a reliability factor at the inter-cluster level

    A Hybrid Combination Scheme for Cooperative Spectrum Sensing in Cognitive Radio Networks

    Get PDF
    We propose a novel hybrid combination scheme in cooperative spectrum sensing (CSS), which utilizes the diversity of reporting channels to achieve better throughput performance. Secondary users (SUs) with good reporting channel quality transmit quantized local observation statistics to fusion center (FC), while others report their local decisions. FC makes the final decision by carrying out hybrid combination. We derive the closed-form expressions of throughput and detection performance as a function of the number of SUs which report local observation statistics. The simulation and numerical results show that the hybrid combination scheme can achieve better throughput performance than hard combination scheme and soft combination scheme

    Optimal Cooperative Spectrum Sensing for Cognitive Radio

    Get PDF
    The rapid increasing interest in wireless communication has led to the continuous development of wireless devices and technologies. The modern convergence and interoperability of wireless technologies has further increased the amount of services that can be provided, leading to the substantial demand for access to the radio frequency spectrum in an efficient manner. Cognitive radio (CR) an innovative concept of reusing licensed spectrum in an opportunistic manner promises to overcome the evident spectrum underutilization caused by the inflexible spectrum allocation. Spectrum sensing in an unswerving and proficient manner is essential to CR. Cooperation amongst spectrum sensing devices are vital when CR systems are experiencing deep shadowing and in a fading environment. In this thesis, cooperative spectrum sensing (CSS) schemes have been designed to optimize detection performance in an efficient and implementable manner taking into consideration: diversity performance, detection accuracy, low complexity, and reporting channel bandwidth reduction. The thesis first investigates state of the art spectrums sensing algorithms in CR. Comparative analysis and simulation results highlights the different pros, cons and performance criteria of a practical CSS scheme leading to the problem formulation of the thesis. Motivated by the problem of diversity performance in a CR network, the thesis then focuses on designing a novel relay based CSS architecture for CR. A major cooperative transmission protocol with low complexity and overhead - Amplify and Forward (AF) cooperative protocol and an improved double energy detection scheme in a single relay and multiple cognitive relay networks are designed. Simulation results demonstrated that the developed algorithm is capable of reducing the error of missed detection and improving detection probability of a primary user (PU). To improve spectrum sensing reliability while increasing agility, a CSS scheme based on evidence theory is next considered in this thesis. This focuses on a data fusion combination rule. The combination of conflicting evidences from secondary users (SUs) with the classical Dempster Shafter (DS) theory rule may produce counter-intuitive results when combining SUs sensing data leading to poor CSS performance. In order to overcome and minimise the effect of the counter-intuitive results, and to enhance performance of the CSS system, a novel state of the art evidence based decision fusion scheme is developed. The proposed approach is based on the credibility of evidence and a dissociability degree measure of the SUs sensing data evidence. Simulation results illustrate the proposed scheme improves detection performance and reduces error probability when compared to other related evidence based schemes under robust practcial scenarios. Finally, motivated by the need for a low complexity and minmum bandwidth reporting channels which can be significant in high data rate applications, novel CSS quantization schemes are proposed. Quantization methods are considered for a maximum likelihood estimation (MLE) and an evidence based CSS scheme. For the MLE based CSS, a novel uniform and optimal output entropy quantization scheme is proposed to provide fewer overhead complexities and improved throughput. While for the Evidence based CSS scheme, a scheme that quantizes the basic probability Assignment (BPA) data at each SU before being sent to the FC is designed. The proposed scheme takes into consideration the characteristics of the hypothesis distribution under diverse signal-to-noise ratio (SNR) of the PU signal based on the optimal output entropy. Simulation results demonstrate that the proposed quantization CSS scheme improves sensing performance with minimum number of quantized bits when compared to other related approaches

    Sensing and transmission strategies in wireless cognitive radio systems

    Full text link
    The main challenge in any cognitive radio system is to maximize secondary users throughput while limiting interference imposed on licensed users. In this regard, finding the optimal sensing and transmission timing strategies and accurate sensing techniques are of great importance in a cognitive radio network. In this thesis, we study a sensing-transmission scheme for secondary user in a cognitive radio system where the secondary user senses every primary channel independently and transmits a signal for a fixed duration if it finds the channel empty and stays idle for another fixed duration if it senses the channel busy. We obtain optimal idle and transmission durations which maximize access opportunity of the secondary user while keeping the interference ratios on the primary channels below some thresholds. Our results show that unless we have an error free perfect channel sensing, adding the idle duration improves the performance of the system. We also study a cooperative spectrum sensing scheme for cognitive radio systems where each sensor transmits multi-bit quantized information to a fusion center where the decision about the availability or occupancy of the channel is made. We compare iii the performance of our proposed multi-bit combining scheme with hard and soft combining schemes and show that with transmission of a few bits of information from each sensor , the system can achieve an error rate very close to the optimal soft combining scheme

    Distributed detection and estimation in wireless sensor networks: resource allocation, fusion rules, and network security

    Get PDF
    This thesis addresses the problem of detection of an unknown binary event. In particular, we consider centralized detection, distributed detection, and network security in wireless sensor networks (WSNs). The communication links among SNs are subject to limited SN transmit power, limited bandwidth (BW), and are modeled as orthogonal channels with path loss, flat fading and additive white Gaussian noise (AWGN). We propose algorithms for resource allocations, fusion rules, and network security. In the first part of this thesis, we consider the centralized detection and calculate the optimal transmit power allocation and the optimal number of quantization bits for each SN. The resource allocation is performed at the fusion center (FC) and it is referred as a centralized approach. We also propose a novel fully distributeddistributed algorithm to address this resource allocation problem. What makes this scheme attractive is that the SNs share with their neighbors just their individual transmit power at the current states. Finally, the optimal soft fusion rule at the FC is derived. But as this rule requires a-priori knowledge that is difficult to attain in practice, suboptimal fusion rules are proposed that are realizable in practice. The second part considers a fully distributed detection framework and we propose a two-step distributed quantized fusion rule algorithm where in the first step the SNs collaborate with their neighbors through error-free, orthogonal channels. In the second step, local 1-bit decisions generated in the first step are shared among neighbors to yield a consensus. A binary hypothesis testing is performed at any arbitrary SN to optimally declare the global decision. Simulations show that our proposed quantized two-step distributed detection algorithm approaches the performance of the unquantized centralized (with a FC) detector and its power consumption is shown to be 50% less than the existing (unquantized) conventional algorithm. Finally, we analyze the detection performance of under-attack WSNs and derive attacking and defense strategies from both the Attacker and the FC perspective. We re-cast the problem as a minimax game between the FC and Attacker and show that the Nash Equilibrium (NE) exists. We also propose a new non-complex and efficient reputation-based scheme to identify these compromised SNs. Based on this reputation metric, we propose a novel FC weight computation strategy ensuring that the weights for the identified compromised SNs are likely to be decreased. In this way, the FC decides how much a SN should contribute to its final decision. We show that this strategy outperforms the existing schemes
    • …
    corecore