66,815 research outputs found

    Comparative study of Sustainability Metrics for Face Milling AISI 1045 in different Machining Centers

    Get PDF
    Comunicación presentada a MESIC 2019 8th Manufacturing Engineering Society International Conference (Madrid, 19-21 de Junio de 2019)The objective of this study is to compare a set of sustainability metrics between different manufacturing resources applied to high performances machining centers. The research compares distributed scenarios in order to find the optimal conditions that allow the minimum consumed power and the minimum roughness when performing face milling operations of AISI 1045 steel. The set of experiments for the surface machining was carried out considering different path strategies in three main directions for two dimensional movements of the tool. The selected experiments considered the main axis movement, the perpendicular axis movement and a 45 degrees movement. Besides, it was considered the feed rate speed and the cutting depth. The design of experiments was developed with the Taguchi method considering an orthogonal matrix of L27 design type, and three levels of experimental design, and the analysis of variance and noise signal were performed. The methodology to determine the lowest power consumed and the best surface quality allowed to establish the working condition in the most sustainable machining. The results show how the cutting parameters influence in each manufacturing resource

    Improvements in energy consumption and environmental impact by novel single shot melting process for casting

    Get PDF
    The CRIMSON (Constrained Rapid Induction Melting Single Shot Up-Casting) method uses a rapid induction furnace to melt just enough metal for a single mould rather than bulk melting used in traditional casting process. The molten metal is then transferred to a computer – controlled platform to complete the counter-gravity up filling. The highly controlled metal flow is pushed into the mould to finish the pouring and solidification. In the present paper the energy saving capability of CRIMSON approach is compared with conventional sand casting process. The paper focuses on the energy and resource efficiency optimization of casting stages through simulation and life cycle assessment analysis simulation for proposing alternative means for the better performance of such processes. It is proven that the CRIMSON process can produce high quality castings with higher energy efficiency and lower environmental impact
    corecore