1,488 research outputs found

    A Study of Bug Resolution Characteristics in Popular Programming Languages

    Get PDF

    Model Transformation Languages with Modular Information Hiding

    Get PDF
    Model transformations, together with models, form the principal artifacts in model-driven software development. Industrial practitioners report that transformations on larger models quickly get sufficiently large and complex themselves. To alleviate entailed maintenance efforts, this thesis presents a modularity concept with explicit interfaces, complemented by software visualization and clustering techniques. All three approaches are tailored to the specific needs of the transformation domain

    A research review of quality assessment for software

    Get PDF
    Measures were recommended to assess the quality of software submitted to the AdaNet program. The quality factors that are important to software reuse are explored and methods of evaluating those factors are discussed. Quality factors important to software reuse are: correctness, reliability, verifiability, understandability, modifiability, and certifiability. Certifiability is included because the documentation of many factors about a software component such as its efficiency, portability, and development history, constitute a class for factors important to some users, not important at all to other, and impossible for AdaNet to distinguish between a priori. The quality factors may be assessed in different ways. There are a few quantitative measures which have been shown to indicate software quality. However, it is believed that there exists many factors that indicate quality and have not been empirically validated due to their subjective nature. These subjective factors are characterized by the way in which they support the software engineering principles of abstraction, information hiding, modularity, localization, confirmability, uniformity, and completeness

    Refining ChatGPT-Generated Code: Characterizing and Mitigating Code Quality Issues

    Full text link
    In this paper, we systematically study the quality of 4,066 ChatGPT-generated code implemented in two popular programming languages, i.e., Java and Python, for 2,033 programming tasks. The goal of this work is three folds. First, we analyze the correctness of ChatGPT on code generation tasks and uncover the factors that influence its effectiveness, including task difficulty, programming language, time that tasks are introduced, and program size. Second, we identify and characterize potential issues with the quality of ChatGPT-generated code. Last, we provide insights into how these issues can be mitigated. Experiments highlight that out of 4,066 programs generated by ChatGPT, 2,757 programs are deemed correct, 1,081 programs provide wrong outputs, and 177 programs contain compilation or runtime errors. Additionally, we further analyze other characteristics of the generated code through static analysis tools, such as code style and maintainability, and find that 1,933 ChatGPT-generated code snippets suffer from maintainability issues. Subsequently, we investigate ChatGPT's self-debugging ability and its interaction with static analysis tools to fix the errors uncovered in the previous step. Experiments suggest that ChatGPT can partially address these challenges, improving code quality by more than 20%, but there are still limitations and opportunities for improvement. Overall, our study provides valuable insights into the current limitations of ChatGPT and offers a roadmap for future research and development efforts to enhance the code generation capabilities of AI models like ChatGPT

    C to O-O Translation: Beyond the Easy Stuff

    Full text link
    Can we reuse some of the huge code-base developed in C to take advantage of modern programming language features such as type safety, object-orientation, and contracts? This paper presents a source-to-source translation of C code into Eiffel, a modern object-oriented programming language, and the supporting tool C2Eif. The translation is completely automatic and supports the entire C language (ANSI, as well as many GNU C Compiler extensions, through CIL) as used in practice, including its usage of native system libraries and inlined assembly code. Our experiments show that C2Eif can handle C applications and libraries of significant size (such as vim and libgsl), as well as challenging benchmarks such as the GCC torture tests. The produced Eiffel code is functionally equivalent to the original C code, and takes advantage of some of Eiffel's object-oriented features to produce safe and easy-to-debug translations

    Model Transformation Languages with Modular Information Hiding

    Get PDF
    Model transformations, together with models, form the principal artifacts in model-driven software development. Industrial practitioners report that transformations on larger models quickly get sufficiently large and complex themselves. To alleviate entailed maintenance efforts, this thesis presents a modularity concept with explicit interfaces, complemented by software visualization and clustering techniques. All three approaches are tailored to the specific needs of the transformation domain
    corecore