4,445 research outputs found

    Test Case Purification for Improving Fault Localization

    Get PDF
    Finding and fixing bugs are time-consuming activities in software development. Spectrum-based fault localization aims to identify the faulty position in source code based on the execution trace of test cases. Failing test cases and their assertions form test oracles for the failing behavior of the system under analysis. In this paper, we propose a novel concept of spectrum driven test case purification for improving fault localization. The goal of test case purification is to separate existing test cases into small fractions (called purified test cases) and to enhance the test oracles to further localize faults. Combining with an original fault localization technique (e.g., Tarantula), test case purification results in better ranking the program statements. Our experiments on 1800 faults in six open-source Java programs show that test case purification can effectively improve existing fault localization techniques

    Learning Tractable Probabilistic Models for Fault Localization

    Full text link
    In recent years, several probabilistic techniques have been applied to various debugging problems. However, most existing probabilistic debugging systems use relatively simple statistical models, and fail to generalize across multiple programs. In this work, we propose Tractable Fault Localization Models (TFLMs) that can be learned from data, and probabilistically infer the location of the bug. While most previous statistical debugging methods generalize over many executions of a single program, TFLMs are trained on a corpus of previously seen buggy programs, and learn to identify recurring patterns of bugs. Widely-used fault localization techniques such as TARANTULA evaluate the suspiciousness of each line in isolation; in contrast, a TFLM defines a joint probability distribution over buggy indicator variables for each line. Joint distributions with rich dependency structure are often computationally intractable; TFLMs avoid this by exploiting recent developments in tractable probabilistic models (specifically, Relational SPNs). Further, TFLMs can incorporate additional sources of information, including coverage-based features such as TARANTULA. We evaluate the fault localization performance of TFLMs that include TARANTULA scores as features in the probabilistic model. Our study shows that the learned TFLMs isolate bugs more effectively than previous statistical methods or using TARANTULA directly.Comment: Fifth International Workshop on Statistical Relational AI (StaR-AI 2015

    Semi-automatic fault localization

    Get PDF
    One of the most expensive and time-consuming components of the debugging process is locating the errors or faults. To locate faults, developers must identify statements involved in failures and select suspicious statements that might contain faults. In practice, this localization is done by developers in a tedious and manual way, using only a single execution, targeting only one fault, and having a limited perspective into a large search space. The thesis of this research is that fault localization can be partially automated with the use of commonly available dynamic information gathered from test-case executions in a way that is effective, efficient, tolerant of test cases that pass but also execute the fault, and scalable to large programs that potentially contain multiple faults. The overall goal of this research is to develop effective and efficient fault localization techniques that scale to programs of large size and with multiple faults. There are three principle steps performed to reach this goal: (1) Develop practical techniques for locating suspicious regions in a program; (2) Develop techniques to partition test suites into smaller, specialized test suites to target specific faults; and (3) Evaluate the usefulness and cost of these techniques. In this dissertation, the difficulties and limitations of previous work in the area of fault-localization are explored. A technique, called Tarantula, is presented that addresses these difficulties. Empirical evaluation of the Tarantula technique shows that it is efficient and effective for many faults. The evaluation also demonstrates that the Tarantula technique can loose effectiveness as the number of faults increases. To address the loss of effectiveness for programs with multiple faults, supporting techniques have been developed and are presented. The empirical evaluation of these supporting techniques demonstrates that they can enable effective fault localization in the presence of multiple faults. A new mode of debugging, called parallel debugging, is developed and empirical evidence demonstrates that it can provide a savings in terms of both total expense and time to delivery. A prototype visualization is provided to display the fault-localization results as well as to provide a method to interact and explore those results. Finally, a study on the effects of the composition of test suites on fault-localization is presented.Ph.D.Committee Chair: Harrold, Mary Jean; Committee Member: Orso, Alessandro; Committee Member: Pande, Santosh; Committee Member: Reiss, Steven; Committee Member: Rugaber, Spence

    Time-Space Efficient Regression Testing for Configurable Systems

    Full text link
    Configurable systems are those that can be adapted from a set of options. They are prevalent and testing them is important and challenging. Existing approaches for testing configurable systems are either unsound (i.e., they can miss fault-revealing configurations) or do not scale. This paper proposes EvoSPLat, a regression testing technique for configurable systems. EvoSPLat builds on our previously-developed technique, SPLat, which explores all dynamically reachable configurations from a test. EvoSPLat is tuned for two scenarios of use in regression testing: Regression Configuration Selection (RCS) and Regression Test Selection (RTS). EvoSPLat for RCS prunes configurations (not tests) that are not impacted by changes whereas EvoSPLat for RTS prunes tests (not configurations) which are not impacted by changes. Handling both scenarios in the context of evolution is important. Experimental results show that EvoSPLat is promising. We observed a substantial reduction in time (22%) and in the number of configurations (45%) for configurable Java programs. In a case study on a large real-world configurable system (GCC), EvoSPLat reduced 35% of the running time. Comparing EvoSPLat with sampling techniques, 2-wise was the most efficient technique, but it missed two bugs whereas EvoSPLat detected all bugs four times faster than 6-wise, on average.Comment: 14 page
    corecore