9,755 research outputs found

    Choosing effective methods for design diversity - How to progress from intuition to science

    Get PDF
    Design diversity is a popular defence against design faults in safety critical systems. Design diversity is at times pursued by simply isolating the development teams of the different versions, but it is presumably better to "force" diversity, by appropriate prescriptions to the teams. There are many ways of forcing diversity. Yet, managers who have to choose a cost-effective combination of these have little guidance except their own intuition. We argue the need for more scientifically based recommendations, and outline the problems with producing them. We focus on what we think is the standard basis for most recommendations: the belief that, in order to produce failure diversity among versions, project decisions should aim at causing "diversity" among the faults in the versions. We attempt to clarify what these beliefs mean, in which cases they may be justified and how they can be checked or disproved experimentally

    Software reliability and dependability: a roadmap

    Get PDF
    Shifting the focus from software reliability to user-centred measures of dependability in complete software-based systems. Influencing design practice to facilitate dependability assessment. Propagating awareness of dependability issues and the use of existing, useful methods. Injecting some rigour in the use of process-related evidence for dependability assessment. Better understanding issues of diversity and variation as drivers of dependability. Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor of Software Engineering at City University, London. Prof Littlewood has worked for many years on problems associated with the modelling and evaluation of the dependability of software-based systems; he has published many papers in international journals and conference proceedings and has edited several books. Much of this work has been carried out in collaborative projects, including the successful EC-funded projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant t

    Amortising the Cost of Mutation Based Fault Localisation using Statistical Inference

    Full text link
    Mutation analysis can effectively capture the dependency between source code and test results. This has been exploited by Mutation Based Fault Localisation (MBFL) techniques. However, MBFL techniques suffer from the need to expend the high cost of mutation analysis after the observation of failures, which may present a challenge for its practical adoption. We introduce SIMFL (Statistical Inference for Mutation-based Fault Localisation), an MBFL technique that allows users to perform the mutation analysis in advance against an earlier version of the system. SIMFL uses mutants as artificial faults and aims to learn the failure patterns among test cases against different locations of mutations. Once a failure is observed, SIMFL requires either almost no or very small additional cost for analysis, depending on the used inference model. An empirical evaluation of SIMFL using 355 faults in Defects4J shows that SIMFL can successfully localise up to 103 faults at the top, and 152 faults within the top five, on par with state-of-the-art alternatives. The cost of mutation analysis can be further reduced by mutation sampling: SIMFL retains over 80% of its localisation accuracy at the top rank when using only 10% of generated mutants, compared to results obtained without sampling

    Predicting software faults in large space systems using machine learning techniques

    Get PDF
    Recently, the use of machine learning (ML) algorithms has proven to be of great practical value in solving a variety of engineering problems including the prediction of failure, fault, and defect-proneness as the space system software becomes complex. One of the most active areas of recent research in ML has been the use of ensemble classifiers. How ML techniques (or classifiers) could be used to predict software faults in space systems, including many aerospace systems is shown, and further use ensemble individual classifiers by having them vote for the most popular class to improve system software fault-proneness prediction. Benchmarking results on four NASA public datasets show the Naive Bayes classifier as more robust software fault prediction while most ensembles with a decision tree classifier as one of its components achieve higher accuracy rates

    Design diversity: an update from research on reliability modelling

    Get PDF
    Diversity between redundant subsystems is, in various forms, a common design approach for improving system dependability. Its value in the case of software-based systems is still controversial. This paper gives an overview of reliability modelling work we carried out in recent projects on design diversity, presented in the context of previous knowledge and practice. These results provide additional insight for decisions in applying diversity and in assessing diverseredundant systems. A general observation is that, just as diversity is a very general design approach, the models of diversity can help conceptual understanding of a range of different situations. We summarise results in the general modelling of common-mode failure, in inference from observed failure data, and in decision-making for diversity in development.

    Towards operational measures of computer security

    Get PDF
    Ideally, a measure of the security of a system should capture quantitatively the intuitive notion of ‘the ability of the system to resist attack’. That is, it should be operational, reflecting the degree to which the system can be expected to remain free of security breaches under particular conditions of operation (including attack). Instead, current security levels at best merely reflect the extensiveness of safeguards introduced during the design and development of a system. Whilst we might expect a system developed to a higher level than another to exhibit ‘more secure behaviour’ in operation, this cannot be guaranteed; more particularly, we cannot infer what the actual security behaviour will be from knowledge of such a level. In the paper we discuss similarities between reliability and security with the intention of working towards measures of ‘operational security’ similar to those that we have for reliability of systems. Very informally, these measures could involve expressions such as the rate of occurrence of security breaches (cf rate of occurrence of failures in reliability), or the probability that a specified ‘mission’ can be accomplished without a security breach (cf reliability function). This new approach is based on the analogy between system failure and security breach. A number of other analogies to support this view are introduced. We examine this duality critically, and have identified a number of important open questions that need to be answered before this quantitative approach can be taken further. The work described here is therefore somewhat tentative, and one of our major intentions is to invite discussion about the plausibility and feasibility of this new approach
    • …
    corecore