3,540 research outputs found

    Security Code Smells in Android ICC

    Get PDF
    Android Inter-Component Communication (ICC) is complex, largely unconstrained, and hard for developers to understand. As a consequence, ICC is a common source of security vulnerability in Android apps. To promote secure programming practices, we have reviewed related research, and identified avoidable ICC vulnerabilities in Android-run devices and the security code smells that indicate their presence. We explain the vulnerabilities and their corresponding smells, and we discuss how they can be eliminated or mitigated during development. We present a lightweight static analysis tool on top of Android Lint that analyzes the code under development and provides just-in-time feedback within the IDE about the presence of such smells in the code. Moreover, with the help of this tool we study the prevalence of security code smells in more than 700 open-source apps, and manually inspect around 15% of the apps to assess the extent to which identifying such smells uncovers ICC security vulnerabilities.Comment: Accepted on 28 Nov 2018, Empirical Software Engineering Journal (EMSE), 201

    User Review-Based Change File Localization for Mobile Applications

    Get PDF
    In the current mobile app development, novel and emerging DevOps practices (e.g., Continuous Delivery, Integration, and user feedback analysis) and tools are becoming more widespread. For instance, the integration of user feedback (provided in the form of user reviews) in the software release cycle represents a valuable asset for the maintenance and evolution of mobile apps. To fully make use of these assets, it is highly desirable for developers to establish semantic links between the user reviews and the software artefacts to be changed (e.g., source code and documentation), and thus to localize the potential files to change for addressing the user feedback. In this paper, we propose RISING (Review Integration via claSsification, clusterIng, and linkiNG), an automated approach to support the continuous integration of user feedback via classification, clustering, and linking of user reviews. RISING leverages domain-specific constraint information and semi-supervised learning to group user reviews into multiple fine-grained clusters concerning similar users' requests. Then, by combining the textual information from both commit messages and source code, it automatically localizes potential change files to accommodate the users' requests. Our empirical studies demonstrate that the proposed approach outperforms the state-of-the-art baseline work in terms of clustering and localization accuracy, and thus produces more reliable results.Comment: 15 pages, 3 figures, 8 table

    Policy Enforcement with Proactive Libraries

    Full text link
    Software libraries implement APIs that deliver reusable functionalities. To correctly use these functionalities, software applications must satisfy certain correctness policies, for instance policies about the order some API methods can be invoked and about the values that can be used for the parameters. If these policies are violated, applications may produce misbehaviors and failures at runtime. Although this problem is general, applications that incorrectly use API methods are more frequent in certain contexts. For instance, Android provides a rich and rapidly evolving set of APIs that might be used incorrectly by app developers who often implement and publish faulty apps in the marketplaces. To mitigate this problem, we introduce the novel notion of proactive library, which augments classic libraries with the capability of proactively detecting and healing misuses at run- time. Proactive libraries blend libraries with multiple proactive modules that collect data, check the correctness policies of the libraries, and heal executions as soon as the violation of a correctness policy is detected. The proactive modules can be activated or deactivated at runtime by the users and can be implemented without requiring any change to the original library and any knowledge about the applications that may use the library. We evaluated proactive libraries in the context of the Android ecosystem. Results show that proactive libraries can automati- cally overcome several problems related to bad resource usage at the cost of a small overhead.Comment: O. Riganelli, D. Micucci and L. Mariani, "Policy Enforcement with Proactive Libraries" 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), Buenos Aires, Argentina, 2017, pp. 182-19

    Automatically Discovering, Reporting and Reproducing Android Application Crashes

    Full text link
    Mobile developers face unique challenges when detecting and reporting crashes in apps due to their prevailing GUI event-driven nature and additional sources of inputs (e.g., sensor readings). To support developers in these tasks, we introduce a novel, automated approach called CRASHSCOPE. This tool explores a given Android app using systematic input generation, according to several strategies informed by static and dynamic analyses, with the intrinsic goal of triggering crashes. When a crash is detected, CRASHSCOPE generates an augmented crash report containing screenshots, detailed crash reproduction steps, the captured exception stack trace, and a fully replayable script that automatically reproduces the crash on a target device(s). We evaluated CRASHSCOPE's effectiveness in discovering crashes as compared to five state-of-the-art Android input generation tools on 61 applications. The results demonstrate that CRASHSCOPE performs about as well as current tools for detecting crashes and provides more detailed fault information. Additionally, in a study analyzing eight real-world Android app crashes, we found that CRASHSCOPE's reports are easily readable and allow for reliable reproduction of crashes by presenting more explicit information than human written reports.Comment: 12 pages, in Proceedings of 9th IEEE International Conference on Software Testing, Verification and Validation (ICST'16), Chicago, IL, April 10-15, 2016, pp. 33-4

    Guidelines for architecting android apps:A mixed-method empirical study

    Get PDF
    For surviving in the highly competitive market of Android apps, it is fundamental for app developers to deliver apps of high quality and with short release times. A well architected Android app is beneficial for developers, e.g. in terms of maintainability, testability, performance, and avoidance of resource leaks. However, how to properly architect Android apps is still debated and subject to conflicting opinions usually influenced by technological hypes rather than objective evidence. In this paper we present an empirical study on how developers architect Android apps, what architectural patterns and practices Android apps are based on, and their potential impact on quality. We apply a mixed-method empirical research design that combines (i) semi-structured interviews with Android practitioners in the field and (ii) a systematic analysis of both the grey (i.e., websites, on-line blogs) and white literature (i.e., academic studies) on the architecture of Android apps. Based on the analysis of the state of the art and practice about architecting Android apps, we systematically extract a set of 42 evidence based guidelines supporting developers when architecting their Android apps
    • …
    corecore