1,080 research outputs found

    Antennas and Propagation of Implanted RFIDs for Pervasive Healthcare Applications

    Get PDF
    © 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/JPROC.2010.205101

    Wisent: Robust Downstream Communication and Storage for Computational RFIDs

    Full text link
    Computational RFID (CRFID) devices are emerging platforms that can enable perennial computation and sensing by eliminating the need for batteries. Although much research has been devoted to improving upstream (CRFID to RFID reader) communication rates, the opposite direction has so far been neglected, presumably due to the difficulty of guaranteeing fast and error-free transfer amidst frequent power interruptions of CRFID. With growing interest in the market where CRFIDs are forever-embedded in many structures, it is necessary for this void to be filled. Therefore, we propose Wisent-a robust downstream communication protocol for CRFIDs that operates on top of the legacy UHF RFID communication protocol: EPC C1G2. The novelty of Wisent is its ability to adaptively change the frame length sent by the reader, based on the length throttling mechanism, to minimize the transfer times at varying channel conditions. We present an implementation of Wisent for the WISP 5 and an off-the-shelf RFID reader. Our experiments show that Wisent allows transfer up to 16 times faster than a baseline, non-adaptive shortest frame case, i.e. single word length, at sub-meter distance. As a case study, we show how Wisent enables wireless CRFID reprogramming, demonstrating the world's first wirelessly reprogrammable (software defined) CRFID.Comment: Accepted for Publication to IEEE INFOCOM 201

    Reviewing the Drivers and Challenges in RFID Implementation in the Pharmaceutical Supply Chain

    Get PDF
    Counterfeiting is a global phenomenon that poses a serious financial threat to the pharmaceutical industry and more importantly jeopardizes public safety and security. Different measures, including new laws and regulations, have been put in place to mitigate the threat and tighten control in the pharmaceuticals supply chain. However, it appears that the most promising countermeasure is track-and-trace technology such as electronic-pedigree (E-pedigree) with Radio Frequency Identification (RFID) technology. In this study we present a framework exploring the antecedents and consequences of RFID applications in the pharmaceutical supply chain. The framework proposes that counterfeiting and E-pedigree regulation will drive the implementation of RFID in the pharmaceutical supply chain, which in turn provides strategic and operational benefits that enable competitive advantage. Meanwhile, the implementation of RFID requires overcoming many operational, technical and financial challenges. The framework provides a springboard that future study can explore using empirical data

    UHF RFID Antennas for Printer-Encoders- Part 1: System Requirements

    Get PDF
    T his series of articles reviews UHF transmission line antennas developed for RFID Printer-Encoders. It explains the basic operating principles of antennas, their effect on the printer's encoding function as well as how the antennas influence the design of labels with embedded transponders (Smart Labels). The survey of antennas is preceded by the evaluation of antenna-transponder mutual coupling in reactive near-field and by the analysis of the Printer-Encoder environment, which yields four comparison criteria of the antennas' performance. After discussing system requirements, the article covers two novel ultra-compact UHF antennas based on the tapered stripline transmission line, developed for the mobile RFID Printer-Encoders. These antennas enable the printers to encode short Smart Labels on a short pitch. The paper presents the development of the antennas, HFSS modeling, and an empirical study of their geometries, characteristic impedance and bandwidth. This type of UHF antennas used for stationary and portable RFID Printer-Encoders may be utilized by numerous item-level close proximity RFID applications

    Securing Deployed RFIDs by Randomizing the Modulation and the Channel

    Get PDF
    RFID cards are widely used today in sensitive applications such as access control, payment systems, and asset tracking. Past work shows that an eavesdropper snooping on the communication between a card and its legitimate reader can break their cryptographic protocol and obtain their secret keys. One solution for this problem is to install stronger cryptographic protocols on the cards. However, RFIDs' size, power, and cost limitations do not allow for conventional cryptographic protocols. Further, installing new protocols requires revoking billions of cards in consumers hands and facilities worldwide, which is costly and impractical. In this paper, we ask whether one can secure RFIDs from such attacks without revoking or changing the insecure cards. We propose LocRF, a solution that changes the signal used to read the RFID cards but does not require any changes to the cards themselves. LocRF introduces a new approach that randomizes the modulation of the RFID signal as well as the wireless channel. This design protects RFIDs from eavesdroppers even if they use multi-antenna MIMO receivers. We built a prototype of LocRF on software-defined radios and used it to secure the communication of off-the-shelf cards. Both our analysis and empirical evaluation demonstrate theeffectiveness of LocRF

    Impact of RFID and EPCglobal on Critical Processes of the Pharmaceutical Supply Chain

    Get PDF
    The need to implement and guarantee effective item-level tracing systems is becoming more and more important for a wide range of business applications, such as manufacturing, logistics, healthcare, and anti-counterfeiting. Among these, the pharmaceutical supply chain, with millions of medicines moving around the world and needing to be traced at item level, represents a very interesting reference scenario. Furthermore, the growing counterfeiting problem raises a significant threat within the supply chain system. Recently, several international institutions (e.g. Food and Drug Administration, European Medicines Agency, European Federation of Pharmaceutical Industries and Associations, GS1) are encouraging the use of innovative solutions in healthcare and in the pharmaceutical supply chain, to improve patient safety and enhance the efficiency of the pharmaceutical supply chain, with better worldwide drug traceability

    Inkjet-printed UHF RFID tag based system for salinity and sugar detection

    Get PDF
    This article presents an RFID system to detect the salinity and sugar contents of water. The proposed system is based on low‐cost ink‐jet printed passive ultrahigh frequency (UHF) RFID tag. The tag is designed using slot match technique, which poses a good imaginary impedance match with RFID chip both in free space and after mounting on the water bottle. Moreover, the tag antenna is exploited as a sensor to detect salt and sugar contents of water by measuring the backscatter power from the tag in term of received signal strength indicator (RSSI). A Tagformance Pro setup form Voyantic is used for measuring RSSI. Furthermore, an approximate relationship is derived between backscatter power and no. of grams of salt and sugar dissolved in water. This study paves a way to check the contents of drinks using portable devices, which is pivotal for healthcare applications in smart cities and the future Internet of things (IoT)

    Experimental feasibility study of a passive radio frequency identification-based distributed beamforming framework and radio frequency tag design for achieving dynamic beamforming

    Get PDF
    Passive UHF RFID tags works on the principle of backscattering mechanism. In realistic environment, there are multiple objects and tags that create complex, multipath propagation scenarios with numerous null-points, reduced read range and read rate. In general, the RF frontend of tags could be controlled such that the negative effects of multipath propagation are reduced or even inverted thus implementing a virtual beamforming. The theoretical framework of beamforming in RFID system, using additional tags as virtual antenna arrays, has been discussed before. The presented study evaluates the feasibility of such beamforming in passive RFID systems. Moreover, it synthesizes an appropriate propagation model that explains the experimental results and will aid in refining the beamforming scheme. Number of practical experiments has been carried out to validate the propagation models that were employed during the scheme design phase. The experimental results are presented and discussed. Although above method achieved increase in signal strength at certain locations, it had negative effect at remaining locations. Thus, a more dynamic beamforming would be required to achieve consistent increase in signal strength at all locations. Hence, above beamforming method is further extended to achieve dynamic beamforming. Method of dynamic beamforming is simulated and its results are discussed. Also, aspects of designing RF tag for achieving dynamic beamforming has been discussed --Abstract, page iv
    corecore