6,426 research outputs found

    A Testability Analysis Framework for Non-Functional Properties

    Full text link
    This paper presents background, the basic steps and an example for a testability analysis framework for non-functional properties

    Significant Subgraph Mining with Multiple Testing Correction

    Full text link
    The problem of finding itemsets that are statistically significantly enriched in a class of transactions is complicated by the need to correct for multiple hypothesis testing. Pruning untestable hypotheses was recently proposed as a strategy for this task of significant itemset mining. It was shown to lead to greater statistical power, the discovery of more truly significant itemsets, than the standard Bonferroni correction on real-world datasets. An open question, however, is whether this strategy of excluding untestable hypotheses also leads to greater statistical power in subgraph mining, in which the number of hypotheses is much larger than in itemset mining. Here we answer this question by an empirical investigation on eight popular graph benchmark datasets. We propose a new efficient search strategy, which always returns the same solution as the state-of-the-art approach and is approximately two orders of magnitude faster. Moreover, we exploit the dependence between subgraphs by considering the effective number of tests and thereby further increase the statistical power.Comment: 18 pages, 5 figure, accepted to the 2015 SIAM International Conference on Data Mining (SDM15

    Empirical Evidence of Large-Scale Diversity in API Usage of Object-Oriented Software

    Get PDF
    In this paper, we study how object-oriented classes are used across thousands of software packages. We concentrate on "usage diversity'", defined as the different statically observable combinations of methods called on the same object. We present empirical evidence that there is a significant usage diversity for many classes. For instance, we observe in our dataset that Java's String is used in 2460 manners. We discuss the reasons of this observed diversity and the consequences on software engineering knowledge and research

    Developing theoretical rigour in inter professional education

    Get PDF
    In this chapter, the author explores the meaning of theory and the role it plays in the development of interprofessional education. The chapter explores specifically the utility of the theory of social capital in the field and uses this as a case theory to present the dimensions of theoretical quality that is proposed as essential to the advancement of research, evaluation and curriculum development in this arena

    On the Notion of Proposition in Classical and Quantum Mechanics

    Full text link
    The term proposition usually denotes in quantum mechanics (QM) an element of (standard) quantum logic (QL). Within the orthodox interpretation of QM the propositions of QL cannot be associated with sentences of a language stating properties of individual samples of a physical system, since properties are nonobjective in QM. This makes the interpretation of propositions problematical. The difficulty can be removed by adopting the objective interpretation of QM proposed by one of the authors (semantic realism, or SR, interpretation). In this case, a unified perspective can be adopted for QM and classical mechanics (CM), and a simple first order predicate calculus L(x) with Tarskian semantics can be constructed such that one can associate a physical proposition (i.e., a set of physical states) with every sentence of L(x). The set PfP^{f} of all physical propositions is partially ordered and contains a subset PTfP^{f}_{T} of testable physical propositions whose order structure depends on the criteria of testability established by the physical theory. In particular, PTfP^{f}_{T} turns out to be a Boolean lattice in CM, while it can be identified with QL in QM. Hence the propositions of QL can be associated with sentences of L(x), or also with the sentences of a suitable quantum language LTQ(x)L_{TQ}(x), and the structure of QL characterizes the notion of testability in QM. One can then show that the notion of quantum truth does not conflict with the classical notion of truth within this perspective. Furthermore, the interpretation of QL propounded here proves to be equivalent to a previous pragmatic interpretation worked out by one of the authors, and can be embodied within a more general perspective which considers states as first order predicates of a broader language with a Kripkean semantics.Comment: 22 pages. To appear in "The Foundations of Quantum Mechanics: Historical Analysis and Open Questions-Cesena 2004", C. Garola, A. Rossi and S. Sozzo Eds., World Scientific, Singapore, 200

    The effectiveness of refactoring, based on a compatibility testing taxonomy and a dependency graph

    Get PDF
    In this paper, we describe and then appraise a testing taxonomy proposed by van Deursen and Moonen (VD&M) based on the post-refactoring repeatability of tests. Four categories of refactoring are identified by VD&M ranging from semantic-preserving to incompatible, where, for the former, no new tests are required and for the latter, a completely new test set has to be developed. In our appraisal of the taxonomy, we heavily stress the need for the inter-dependence of the refactoring categories to be considered when making refactoring decisions and we base that need on a refactoring dependency graph developed as part of the research. We demonstrate that while incompatible refactorings may be harmful and time-consuming from a testing perspective, semantic-preserving refactorings can have equally unpleasant hidden ramifications despite their advantages. In fact, refactorings which fall into neither category have the most interesting properties. We support our results with empirical refactoring data drawn from seven Java open-source systems (OSS) and from the same analysis form a tentative categorization of code smells

    Why Scientific Knowledge Is Still the Best

    Get PDF
    In his latest attack, even though he claims to be a practitioner of “close reading” (Wills 2018b, 34), it appears that Wills still has not bothered to read the paper in which I defend the thesis he seeks to attack (Mizrahi 2017a), or any of the papers in my exchange with Brown (Mizrahi 2017b; 2018a), as evidenced by the fact that he does not cite them at all. This explains why Wills completely misunderstands Weak Scientism and the arguments for the quantitative superiority (in terms of research output and research impact) as well as qualitative superiority (in terms of explanatory, predictive, and instrumental success) of scientific knowledge over non-scientific knowledge
    • 

    corecore