1,433 research outputs found

    International conference on software engineering and knowledge engineering: Session chair

    Get PDF
    The Thirtieth International Conference on Software Engineering and Knowledge Engineering (SEKE 2018) will be held at the Hotel Pullman, San Francisco Bay, USA, from July 1 to July 3, 2018. SEKE2018 will also be dedicated in memory of Professor Lofti Zadeh, a great scholar, pioneer and leader in fuzzy sets theory and soft computing. The conference aims at bringing together experts in software engineering and knowledge engineering to discuss on relevant results in either software engineering or knowledge engineering or both. Special emphasis will be put on the transference of methods between both domains. The theme this year is soft computing in software engineering & knowledge engineering. Submission of papers and demos are both welcome

    A Pre-Trained BERT Model for Android Applications

    Full text link
    The automation of an increasingly large number of software engineering tasks is becoming possible thanks to Machine Learning (ML). One foundational building block in the application of ML to software artifacts is the representation of these artifacts (e.g., source code or executable code) into a form that is suitable for learning. Many studies have leveraged representation learning, delegating to ML itself the job of automatically devising suitable representations. Yet, in the context of Android problems, existing models are either limited to coarse-grained whole-app level (e.g., apk2vec) or conducted for one specific downstream task (e.g., smali2vec). Our work is part of a new line of research that investigates effective, task-agnostic, and fine-grained universal representations of bytecode to mitigate both of these two limitations. Such representations aim to capture information relevant to various low-level downstream tasks (e.g., at the class-level). We are inspired by the field of Natural Language Processing, where the problem of universal representation was addressed by building Universal Language Models, such as BERT, whose goal is to capture abstract semantic information about sentences, in a way that is reusable for a variety of tasks. We propose DexBERT, a BERT-like Language Model dedicated to representing chunks of DEX bytecode, the main binary format used in Android applications. We empirically assess whether DexBERT is able to model the DEX language and evaluate the suitability of our model in two distinct class-level software engineering tasks: Malicious Code Localization and Defect Prediction. We also experiment with strategies to deal with the problem of catering to apps having vastly different sizes, and we demonstrate one example of using our technique to investigate what information is relevant to a given task

    Data Mining and Machine Learning for Software Engineering

    Get PDF
    Software engineering is one of the most utilizable research areas for data mining. Developers have attempted to improve software quality by mining and analyzing software data. In any phase of software development life cycle (SDLC), while huge amount of data is produced, some design, security, or software problems may occur. In the early phases of software development, analyzing software data helps to handle these problems and lead to more accurate and timely delivery of software projects. Various data mining and machine learning studies have been conducted to deal with software engineering tasks such as defect prediction, effort estimation, etc. This study shows the open issues and presents related solutions and recommendations in software engineering, applying data mining and machine learning techniques

    Connecting Software Metrics across Versions to Predict Defects

    Full text link
    Accurate software defect prediction could help software practitioners allocate test resources to defect-prone modules effectively and efficiently. In the last decades, much effort has been devoted to build accurate defect prediction models, including developing quality defect predictors and modeling techniques. However, current widely used defect predictors such as code metrics and process metrics could not well describe how software modules change over the project evolution, which we believe is important for defect prediction. In order to deal with this problem, in this paper, we propose to use the Historical Version Sequence of Metrics (HVSM) in continuous software versions as defect predictors. Furthermore, we leverage Recurrent Neural Network (RNN), a popular modeling technique, to take HVSM as the input to build software prediction models. The experimental results show that, in most cases, the proposed HVSM-based RNN model has a significantly better effort-aware ranking effectiveness than the commonly used baseline models

    Explainable AI for Android Malware Detection: Towards Understanding Why the Models Perform So Well?

    Full text link
    Machine learning (ML)-based Android malware detection has been one of the most popular research topics in the mobile security community. An increasing number of research studies have demonstrated that machine learning is an effective and promising approach for malware detection, and some works have even claimed that their proposed models could achieve 99\% detection accuracy, leaving little room for further improvement. However, numerous prior studies have suggested that unrealistic experimental designs bring substantial biases, resulting in over-optimistic performance in malware detection. Unlike previous research that examined the detection performance of ML classifiers to locate the causes, this study employs Explainable AI (XAI) approaches to explore what ML-based models learned during the training process, inspecting and interpreting why ML-based malware classifiers perform so well under unrealistic experimental settings. We discover that temporal sample inconsistency in the training dataset brings over-optimistic classification performance (up to 99\% F1 score and accuracy). Importantly, our results indicate that ML models classify malware based on temporal differences between malware and benign, rather than the actual malicious behaviors. Our evaluation also confirms the fact that unrealistic experimental designs lead to not only unrealistic detection performance but also poor reliability, posing a significant obstacle to real-world applications. These findings suggest that XAI approaches should be used to help practitioners/researchers better understand how do AI/ML models (i.e., malware detection) work -- not just focusing on accuracy improvement.Comment: Accepted by the 33rd IEEE International Symposium on Software Reliability Engineering (ISSRE 2022

    Use and misuse of the term "Experiment" in mining software repositories research

    Get PDF
    The significant momentum and importance of Mining Software Repositories (MSR) in Software Engineering (SE) has fostered new opportunities and challenges for extensive empirical research. However, MSR researchers seem to struggle to characterize the empirical methods they use into the existing empirical SE body of knowledge. This is especially the case of MSR experiments. To provide evidence on the special characteristics of MSR experiments and their differences with experiments traditionally acknowledged in SE so far, we elicited the hallmarks that differentiate an experiment from other types of empirical studies and characterized the hallmarks and types of experiments in MSR. We analyzed MSR literature obtained from a small-scale systematic mapping study to assess the use of the term experiment in MSR. We found that 19% of the papers claiming to be an experiment are indeed not an experiment at all but also observational studies, so they use the term in a misleading way. From the remaining 81% of the papers, only one of them refers to a genuine controlled experiment while the others stand for experiments with limited control. MSR researchers tend to overlook such limitations, compromising the interpretation of the results of their studies. We provide recommendations and insights to support the improvement of MSR experiments.This work has been partially supported by the Spanish project: MCI PID2020-117191RB-I00.Peer ReviewedPostprint (author's final draft
    corecore