1,130 research outputs found

    An empirical evaluation of touch and tangible interfaces for tabletop displays

    Get PDF
    Tabletop systems have become quite popular in recent years, during which there was considerable enthusiasm for the development of new interfaces. In this paper, we establish a comparison between touch and tangible interfaces. We set up an experiment involving several actions like translation and rotation. We recruited 40 participants to take part in a user study and we present our results with a discussion on the design of touch and tangible interfaces. Our contribution is an empirical study showing that overall, the tangible interface is much faster but under certain conditions, the touch interface could gain the upper hand

    TangiWheel: A widget for manipulating collections on tabletop displays supporting hybrid Input modality

    Full text link
    In this paper we present TangiWheel, a collection manipulation widget for tabletop displays. Our implementation is flexible, allowing either multi-touch or interaction, or even a hybrid scheme to better suit user choice and convenience. Different TangiWheel aspects and features are compared with other existing widgets for collection manipulation. The study reveals that TangiWheel is the first proposal to support a hybrid input modality with large resemblance levels between touch and tangible interaction styles. Several experiments were conducted to evaluate the techniques used in each input scheme for a better understanding of tangible surface interfaces in complex tasks performed by a single user (e.g., involving a typical master-slave exploration pattern). The results show that tangibles perform significantly better than fingers, despite dealing with a greater number of interactions, in situations that require a large number of acquisitions and basic manipulation tasks such as establishing location and orientation. However, when users have to perform multiple exploration and selection operations that do not require previous basic manipulation tasks, for instance when collections are fixed in the interface layout, touch input is significantly better in terms of required time and number of actions. Finally, when a more elastic collection layout or more complex additional insertion or displacement operations are needed, the hybrid and tangible approaches clearly outperform finger-based interactions.. ©2012 Springer Science+Business Media, LLC & Science Press, ChinaThe work is supported by the Ministry of Education of Spain under Grant No. TSI2010-20488. Alejandro Catala is supported by an FPU fellowship for pre-doctoral research staff training granted by the Ministry of Education of Spain with reference AP2006-00181.CatalĂĄ BolĂłs, A.; GarcĂ­a Sanjuan, F.; JaĂ©n MartĂ­nez, FJ.; Mocholi AgĂŒes, JA. (2012). TangiWheel: A widget for manipulating collections on tabletop displays supporting hybrid Input modality. Journal of Computer Science and Technology. 27(4):811-829. doi:10.1007/s11390-012-1266-4S811829274JordĂ  S, Geiger G, Alonso M, Kaltenbrunner M. The reacTable: Exploring the synergy between live music performance and tabletop tangible interfaces. In Proc. TEI 2007, Baton Rouge, LA, USA, Feb. 15-17, 2007, pp.139–146.Vandoren P, van Laerhoven T, Claesen L, Taelman J, Raymaekers C, van Reeth F. IntuPaint: Bridging the gap between physical and digital painting. In Proc. TABLETOP2008, Amterdam, the Netherlands, Oct. 1-3, 2008, pp.65–72.Schöning J, Hecht B, Raubal M, KrĂŒger A, Marsh M, Rohs M. Improving interaction with virtual globes through spatial thinking: Helping users ask “why?”. In Proc. IUI 2008, Canary Islans, Spain, Jan. 13-16, 2008, pp.129–138.Fitzmaurice GW, BuxtonW. An empirical evaluation of graspable user interfaces: Towards specialized, space-multiplexed input. In Proc. CHI 1997, Atlanta, USA, March 22-27, 1997, pp.43–50.Tuddenham P, Kirk D, Izadi S. Graspables revisited: Multitouch vs. tangible input for tabletop displays in acquisition and manipulation tasks. In Proc. CHI 2010, Atlanta, USA, April 10-15, 2010, pp.2223–2232.Lucchi A, Jermann P, Zufferey G, Dillenbourg P. An empirical evaluation of touch and tangible interfaces for tabletop displays. In Proc. TEI 2010, Cambridge, USA, Jan. 25-27, 2010, pp.177–184.Fitzmaurice G W, Ishii H, Buxton W. Bricks: Laying the foundations for graspable user interfaces. In Proc. CHI 1995, Denver, USA, May 7-11, 1995, pp.442–449.Ishii H, Ullmer B. Tangible bits: Towards seamless interfaces between people, bits and atoms. In Proc. CHI 1997, Atlanta, USA, March 22-27, 1997, pp.234–241.Ullmer B, Ishii H, Glas D. mediaBlocks: Physical containers, transports, and controls for online media. In Proc. SIGGRAPH1998, Orlando, USA, July 19-24, 1998, pp.379–386.Shen C, Hancock M S, Forlines C, Vernier F D. CoR2Ds: Context-rooted rotatable draggables for tabletop interaction. In Proc. CHI 2005, Portland, USA, April 2-7, 2005, pp.1781–1784.Lepinski G J, Grossman T, Fitzmaurice G. The design and evaluation of multitouch marking menus. In Proc. CHI 2010, Atlanta, USA, April 10-15, 2010, pp.2233–2242.Accot J, Zhai S. Beyond Fitts’ law: Models for trajectorybased HCI tasks. In Proc. CHI 1997, Atlanta, USA, March 22-27, 1997, pp.295–302.Song H, Kim B, Lee B, Seo J. A comparative evaluation on tree visualization methods for hierarchical structures with large fan-outs. In Proc. CHI 2010, Atlanta, USA, April 10-15, 2010, pp.223–232.Bailly G, Lecolinet E, Nigay L. Wave menus: Improving the novice mode of hierarchical marking menus. In Proc. INTERACT2007, RĂ­o de Janeiro, Brazil, Sept. 10-14, 2007, pp.475–488.Zhao S, Agrawala M, Hinckley K. Zone and polygon menus: Using relative position to increase the breadth of multi-stroke marking menus. In Proc. CHI 2006, Montreal, Canada, April 24-27, 2006, pp.1077–1086.Patten J, Recht B, Ishii H. Interaction techniques for musical performance with tabletop tangible interfaces. In Proc. ACE2006, Hollywood, USA, Jun. 14-16, 2006, Article No.27.Weiss M, Wagner J, Jansen Y, Jennings R, Khoshabeh R, Hollan J D, Borchers J. SLAP widgets: Bridging the gap between virtual and physical controls on tabletops. In Proc. CHI 2009, Boston, USA, April 4-9, 2009, pp.481–490.Hancock M, Hilliges O, Collins C, Baur D, Carpendale S. Exploring tangible and direct touch interfaces for manipulating 2D and 3D information on a digital table. In Proc. ITS 2009, Banff, Canada, Nov. 23-25, pp.77–84.Hilliges O, Baur D, Butz A. Photohelix: Browsing, sorting and sharing digital photo collections. In Proc. Horizontal Interactive Human-Computer Systems (TABLETOP2007), Newport, Rhode Island, USA, Oct. 10-12, 2007, pp.87–94.Hesselmann T, Flöring S, Schmidt M. Stacked half-Pie menus: Navigating nested menus on interactive tabletops. In Proc. ITS 2009, Banff, Canada, Nov. 23-25, 2009, pp.173–180.Gallardo D, JordĂ  S. Tangible jukebox: Back to palpable music. In Proc. TEI 2010, Boston, USA, Jan. 25-27, 2010, pp.199–202.Fishkin K. A taxonomy for and analysis of tangible interfaces. Personal and Ubiquitous Computing, 2004, 8(5): 347–358.Catala A, Jaen J, Martinez-Villaronga A A, Mocholi J A. AGORAS: Exploring creative learning on tangible user interfaces. In Proc. COMPSAC 2011, Munich, Germany, July 18-22, 2011, pp.326–335.Catala A, Garcia-Sanjuan F, Azorin J, Jaen J, Mocholi J A. Exploring direct communication and manipulation on interactive surfaces to foster novelty in a creative learning environment. IJCSRA, 2012, 2(1): 15–24.Catala A, Jaen J, van Dijk B, Jord`a S. Exploring tabletops as an effective tool to foster creativity traits. In Proc. TEI 2012, Kingston, Canada, Feb. 19-22, 2012, pp.143–150.Hopkins D. Directional selection is easy as pie menus. In: The Usenix Association Newsletter, 1987, 12(5): 103.Microsoft Surface User Experience Guidelines. http://msdn.microsoft.com/en-us/library/ff318692.aspx , May 2011.Maydak M, Stromer R, Mackay H A, Stoddard L T. Stimulus classes in matching to sample and sequence production: The emergence of numeric relations. Research in Developmental Disabilities, 1995, 16(3): 179–204

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Entry and access : how shareability comes about

    Get PDF
    Shareability is a design principle that refers to how a system, interface, or device engages a group of collocated, co-present users in shared interactions around the same content (or the same object). This is broken down in terms of a set of components that facilitate or constrain the way an interface (or product) is made shareable. Central are the notions of access points and entry points. Entry points invite and entice people into engagement, providing an advance overview, minimal barriers, and a honeypot effect that draws observers into the activity. Access points enable users to join a group's activity, allowing perceptual and manipulative access and fluidity of sharing. We show how these terms can be useful for informing analysis and empirical research

    Light on horizontal interactive surfaces: Input space for tabletop computing

    Get PDF
    In the last 25 years we have witnessed the rise and growth of interactive tabletop research, both in academic and in industrial settings. The rising demand for the digital support of human activities motivated the need to bring computational power to table surfaces. In this article, we review the state of the art of tabletop computing, highlighting core aspects that frame the input space of interactive tabletops: (a) developments in hardware technologies that have caused the proliferation of interactive horizontal surfaces and (b) issues related to new classes of interaction modalities (multitouch, tangible, and touchless). A classification is presented that aims to give a detailed view of the current development of this research area and define opportunities and challenges for novel touch- and gesture-based interactions between the human and the surrounding computational environment. © 2014 ACM.This work has been funded by Integra (Amper Sistemas and CDTI, Spanish Ministry of Science and Innovation) and TIPEx (TIN2010-19859-C03-01) projects and Programa de Becas y Ayudas para la Realización de Estudios Oficiales de Måster y Doctorado en la Universidad Carlos III de Madrid, 2010

    Interactive tabletops in education

    Get PDF
    Interactive tabletops are gaining increased attention from CSCL researchers. This paper analyses the relation between this technology and teaching and learning processes. At a global level, one could argue that tabletops convey a socio-constructivist flavor: they support small teams that solve problems by exploring multiple solutions. The development of tabletop applications also witnesses the growing importance of face-to-face collaboration in CSCL and acknowledges the physicality of learning. However, this global analysis is insufficient. To analyze the educational potential of tabletops in education, we present 33 points that should be taken into consideration. These points are structured on four levels: individual user-system interaction, teamwork, classroom orchestration, and socio-cultural contexts. God lies in the detail

    Mechanisms for collaboration: a design and evaluation framework for multi-user interfaces

    Get PDF
    Multi-user interfaces are said to provide “natural” interaction in supporting collaboration, compared to individual and noncolocated technologies. We identify three mechanisms accounting for the success of such interfaces: high awareness of others' actions and intentions, high control over the interface, and high availability of background information. We challenge the idea that interaction over such interfaces is necessarily “natural” and argue that everyday interaction involves constraints on awareness, control, and availability. These constraints help people interact more smoothly. We draw from social developmental psychology to characterize the design of multi-user interfaces in terms of how constraints on these mechanisms can be best used to promote collaboration. We use this framework of mechanisms and constraints to explain the successes and failures of existing designs, then apply it to three case studies of design, and finally derive from them a set of questions to consider when designing and analysing multi-user interfaces for collaboration

    RFID interactive tabletop application with tangible objects: exploratory study to observe young children’ behaviors

    Get PDF
    International audienceNumerous academic and industrial studies and developments concerning interactive tabletops are paving the way for new educational applications. We have developed an interactive tabletop application equipped with RFID technology. This tabletop, called TangiSense, is based on a Multi-Agent System that allows users to associate information with behaviors to manipulate tangible objects. The application involves the recognition of basic colors. With the application, children are required to manipulate tangible objects. Their task involves recognizing objects that have "lost" their dominant color and placing these objects in appropriate colored areas. A tangible magician object automatically analyzes the filled zones and provides children and their teacher with virtual and vocal feedback. This application has been evaluated in a field study with children 3 to 5 years of age. The initial results are promising and show that such an application can support interaction and collaboration, and subsequently educational situations, among young children

    Establishing the design knowledge for emerging interaction platforms

    Get PDF
    While awaiting a variety of innovative interactive products and services to appear in the market in the near future such as interactive tabletops, interactive TVs, public multi-touch walls, and other embedded appliances, this paper calls for preparation for the arrival of such interactive platforms based on their interactivity. We advocate studying, understanding and establishing the foundation for interaction characteristics and affordances and design implications for these platforms which we know will soon emerge and penetrate our everyday lives. We review some of the archetypal interaction platform categories of the future and highlight the current status of the design knowledge-base accumulated to date and the current rate of growth for each of these. We use example designs illustrating design issues and considerations based on the authors’ 12-year experience in pioneering novel applications in various forms and styles

    Accessibility and tangible interaction in distributed workspaces based on multi-touch surfaces

    Full text link
    [EN] Traditional interaction mechanisms in distributed digital spaces often fail to consider the intrinsic properties of action, perception, and communication among workgroups, which may affect access to the common resources used to mutually organize information. By developing suitable spatial geometries and natural interaction mechanisms, distributed spaces can become blended where the physical and virtual boundaries of local and remote spaces merge together to provide the illusion of a single unified space. In this paper, we discuss the importance of blended interaction in distributed spaces and the particular challenges faced when designing accessible technology. We illustrate this discussion through a new tangible interaction mechanism for collaborative spaces based on tabletop system technology implemented with optical frames. Our tangible elements facilitate the exchange of digital information in distributed collaborative settings by providing a physical manifestation of common digital operations. The tangibles are designed as passive elements that do not require the use of any additional hardware or external power while maintaining a high degree of accuracy.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund, through the ANNOTA Project (Ref. TIN2013-46036-C3-1-R).Salvador-Herranz, G.; Camba, J.; Contero, M.; Naya Sanchis, F. (2018). Accessibility and tangible interaction in distributed workspaces based on multi-touch surfaces. Universal Access in the Information Society. 17(2):247-256. https://doi.org/10.1007/s10209-017-0563-7S247256172Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An efficiently computable metric for comparing polygonal shapes. IEEE Trans. Acoust. Speech Signal Process. 13(3), 209–216 (1991)Benyon, D.: Presence in blended spaces. Interact. Comput. 24(4), 219–226 (2012)Bhalla, M.R., Bhalla, A.V.: Comparative study of various touchscreen technologies. Int. J. Comput. Appl. 6(8), 12–18 (2010)Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media Inc., Newton (2008)Candela, E.S., PĂ©rez, M.O., Romero, C.M., LĂłpez, D.C.P., Herranz, G.S., Contero, M., Raya, M.A.: Humantop: a multi-object tracking tabletop. Multimed. Tools Appl. 70(3), 1837–1868 (2014)Cohen, J., Withgott, M., Piernot, P.: Logjam: a tangible multi-person interface for video logging. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 128–135. ACM (1999)Couture, N., RiviĂšre, G., Reuter, P.: Geotui: a tangible user interface for geoscience. In: Proceedings of the 2nd International Conference on Tangible and Embedded Interaction, pp. 89–96. ACM (2008)de la GuĂ­a, E., Lozano, M.D., Penichet, V.R.: Cognitive rehabilitation based on collaborative and tangible computer games. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 389–392. IEEE (2013)Dietz, P., Leigh, D.: Diamondtouch: a multi-user touch technology. In: Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, pp. 219–226. ACM (2001)FalcĂŁo, T.P., Price, S.: What have you done! the role of ‘interference’ in tangible environments for supporting collaborative learning. In: Proceedings of the 9th International Conference on Computer Supported Collaborative Learning-Volume 1, pp. 325–334. International Society of the Learning Sciences (2009)Fallman, D.: Wear, point and tilt. In: Proceedings of the Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, pp. 293–302. ACM Press (2002)Fishkin, K.P., Gujar, A., Harrison, B.L., Moran, T.P., Want, R.: Embodied user interfaces for really direct manipulation. Commun. ACM 43(9), 74–80 (2000)Fitzmaurice, G.W., Buxton, W.: An empirical evaluation of graspable user interfaces: towards specialized, space-multiplexed input. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 43–50. ACM (1997)Fitzmaurice, G.W., Ishii, H., Buxton, W.A.: Bricks: laying the foundations for graspable user interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 442–449. ACM Press (1995)Graham, R.L., Yao, F.F.: Finding the convex hull of a simple polygon. J. Algorithms 4(4), 324–331 (1983)Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc.: Ser. C (Appl. Stat.) 28(1), 100–108 (1979)Higgins, S.E., Mercier, E., Burd, E., Hatch, A.: Multi-touch tables and the relationship with collaborative classroom pedagogies: a synthetic review. Int. J. Comput. Support. Collab. Learn. 6(4), 515–538 (2011)Hinckley, K., Pausch, R., Goble, J.C., Kassell, N.F.: Passive real-world interface props for neurosurgical visualization. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 452–458. ACM (1994)Hinske, S.: Determining the position and orientation of multi-tagged objects using RFID technology. In: 5th Annual IEEE International Conference on Pervasive Computing and Communications Workshops, 2007. PerCom Workshops’07, pp. 377–381. IEEE (2007)Hornecker, E.: A design theme for tangible interaction: embodied facilitation. In: ECSCW 2005, pp. 23–43. Springer (2005)Hoshi, K., Öhberg, F., Nyberg, A.: Designing blended reality space: conceptual foundations and applications. In: Proceedings of the 25th BCS Conference on Human–Computer Interaction, pp. 217–226. British Computer Society (2011)Ishii, H.: Tangible User Interfaces. CRC Press, Boca Raton (2007)Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits and atoms. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 234–241. ACM (1997)Jacob, R.J., Girouard, A., Hirshfield, L.M., Horn, M.S., Shaer, O., Solovey, E.T., Zigelbaum, J.: Reality-based interaction: a framework for post-wimp interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 201–210. ACM (2008)Jetter, H.C., Dachselt, R., Reiterer, H., Quigley, A., Benyon, D., Haller, M.: Blended Interaction: Envisioning Future Collaborative Interactive Spaces. ACM, New York (2013)Jin, X., Han, J.: Quality threshold clustering. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 820–820. Springer, Boston, MA (2011)JordĂ , S., Geiger, G., Alonso, M., Kaltenbrunner, M.: The reactable: exploring the synergy between live music performance and tabletop tangible interfaces. In: Proceedings of the 1st International Conference on Tangible and Embedded Interaction, pp. 139–146. ACM (2007)Kaltenbrunner, M., Bovermann, T., Bencina, R., Costanza, E.: Tuio: a protocol for table-top tangible user interfaces. In: Proceedings of the 6th International Workshop on Gesture in Human–Computer Interaction and Simulation, pp. 1–5 (2005)Kirk, D., Sellen, A., Taylor, S., Villar, N., Izadi, S.: Putting the physical into the digital: issues in designing hybrid interactive surfaces. In: Proceedings of the 23rd British HCI Group Annual Conference on People and Computers: Celebrating People and Technology, pp. 35–44. British Computer Society (2009)Marques, T., Nunes, F., Silva, P., Rodrigues, R.: Tangible interaction on tabletops for elderly people. In: International Conference on Entertainment Computing, pp. 440–443. Springer (2011)MĂŒller, D.: Mixed reality systems. iJOE 5(S2), 10–11 (2009)Newton-Dunn, H., Nakano, H., Gibson, J.: Block jam: a tangible interface for interactive music. In: Proceedings of the 2003 Conference on New Interfaces for Musical Expression, pp. 170–177. National University of Singapore (2003)Patten, J., Recht, B., Ishii, H.: Audiopad: a tag-based interface for musical performance. In: Proceedings of the 2002 Conference on New Interfaces for Musical Expression, pp. 1–6. National University of Singapore (2002)Patten, J., Recht, B., Ishii, H.: Interaction techniques for musical performance with tabletop tangible interfaces. In: Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, p. 27. ACM (2006)PQLabs: Inc. http://multitouch.com/ . Retrieved on 16 October 2016Ryokai, K., Marti, S., Ishii, H.: I/o brush: drawing with everyday objects as ink. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’04, pp. 303–310. ACM, New York (2004). doi: 10.1145/985692.985731Salvador, G., Bañó, M., Contero, M., Camba, J.: Evaluation of a distributed collaborative workspace as a creativity tool in the context of design education. In: 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pp. 1–7. IEEE (2014)Salvador-Herranz, G., Contero, M., Camba, J.: Use of tangible marks with optical frame interactive surfaces in collaborative design scenarios based on blended spaces. In: International Conference on Cooperative Design, Visualization and Engineering, pp. 253–260. Springer (2014)Salvador-Herranz, G., Camba, J.D., Naya, F., Contero, M.: On the integration of tangible elements with multi-touch surfaces for the collaborative creation of concept maps. In: International Conference on Learning and Collaboration Technologies, pp. 177–186. Springer (2016)Schöning, J., Hook, J., Bartindale, T., Schmidt, D., Oliver, P., Echtler, F., Motamedi, N., Brandl, P., von Zadow, U.: Building interactive multi-touch surfaces. In: MĂŒller-Tomfelde, C. (ed.) Tabletops-Horizontal Interactive Displays, pp. 27–49. Springer, London, UK (2010)Shaer, O., Hornecker, E.: Tangible user interfaces: past, present, and future directions. Found. Trends Hum. Comput. Interact. 3(1–2), 1–137 (2010)Shen, C., Everitt, K., Ryall, K.: Ubitable: Impromptu face-to-face collaboration on horizontal interactive surfaces. In: International Conference on Ubiquitous Computing, pp. 281–288. Springer (2003)Suzuki, H., Kato, H.: Algoblock: a tangible programming language, a tool for collaborative learning. In: Proceedings of 4th European Logo Conference, pp. 297–303 (1993)Suzuki, H., Kato, H.: Interaction-level support for collaborative learning: Algoblockan open programming language. In: The 1st International Conference on Computer Support for Collaborative Learning, pp. 349–355. L. Erlbaum Associates Inc. (1995)Terrenghi, L., Kirk, D., Richter, H., KrĂ€mer, S., Hilliges, O., Butz, A.: Physical handles at the interactive surface: exploring tangibility and its benefits. In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 138–145. ACM (2008)Veltkamp, R.C.: Shape matching: similarity measures and algorithms. In: SMI 2001 International Conference on Shape Modeling and Applications, pp. 188–197. IEEE (2001)Weinberg, G., Gan, S.L.: The squeezables: Toward an expressive and interdependent multi-player musical instrument. Comput. Music J. 25(2), 37–45 (2001)Weiser, M.: Some computer science issues in ubiquitous computing. Commun. ACM 36(7), 75–84 (1993)Wilson, F.: The hand: how its use shapes the brain, language, and human culture. Vintage Series. Vintage Books (1998). https://books.google.es/books?id=l_Boy_-NkwUCZuckerman, O., Arida, S., Resnick, M.: Extending tangible interfaces for education: digital montessori-inspired manipulatives. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 859–868. ACM (2005
    • 

    corecore