106,123 research outputs found

    Firearms and Tigers are Dangerous, Kitchen Knives and Zebras are Not: Testing whether Word Embeddings Can Tell

    Full text link
    This paper presents an approach for investigating the nature of semantic information captured by word embeddings. We propose a method that extends an existing human-elicited semantic property dataset with gold negative examples using crowd judgments. Our experimental approach tests the ability of supervised classifiers to identify semantic features in word embedding vectors and com- pares this to a feature-identification method based on full vector cosine similarity. The idea behind this method is that properties identified by classifiers, but not through full vector comparison are captured by embeddings. Properties that cannot be identified by either method are not. Our results provide an initial indication that semantic properties relevant for the way entities interact (e.g. dangerous) are captured, while perceptual information (e.g. colors) is not represented. We conclude that, though preliminary, these results show that our method is suitable for identifying which properties are captured by embeddings.Comment: Accepted to the EMNLP workshop "Analyzing and interpreting neural networks for NLP

    Differential geometric regularization for supervised learning of classifiers

    Full text link
    We study the problem of supervised learning for both binary and multiclass classification from a unified geometric perspective. In particular, we propose a geometric regularization technique to find the submanifold corresponding to an estimator of the class probability P(y|\vec x). The regularization term measures the volume of this submanifold, based on the intuition that overfitting produces rapid local oscillations and hence large volume of the estimator. This technique can be applied to regularize any classification function that satisfies two requirements: firstly, an estimator of the class probability can be obtained; secondly, first and second derivatives of the class probability estimator can be calculated. In experiments, we apply our regularization technique to standard loss functions for classification, our RBF-based implementation compares favorably to widely used regularization methods for both binary and multiclass classification.http://proceedings.mlr.press/v48/baia16.pdfPublished versio

    Out-of-sample generalizations for supervised manifold learning for classification

    Get PDF
    Supervised manifold learning methods for data classification map data samples residing in a high-dimensional ambient space to a lower-dimensional domain in a structure-preserving way, while enhancing the separation between different classes in the learned embedding. Most nonlinear supervised manifold learning methods compute the embedding of the manifolds only at the initially available training points, while the generalization of the embedding to novel points, known as the out-of-sample extension problem in manifold learning, becomes especially important in classification applications. In this work, we propose a semi-supervised method for building an interpolation function that provides an out-of-sample extension for general supervised manifold learning algorithms studied in the context of classification. The proposed algorithm computes a radial basis function (RBF) interpolator that minimizes an objective function consisting of the total embedding error of unlabeled test samples, defined as their distance to the embeddings of the manifolds of their own class, as well as a regularization term that controls the smoothness of the interpolation function in a direction-dependent way. The class labels of test data and the interpolation function parameters are estimated jointly with a progressive procedure. Experimental results on face and object images demonstrate the potential of the proposed out-of-sample extension algorithm for the classification of manifold-modeled data sets
    • …
    corecore