7,024 research outputs found

    Multimodal Machine Learning for Automated ICD Coding

    Full text link
    This study presents a multimodal machine learning model to predict ICD-10 diagnostic codes. We developed separate machine learning models that can handle data from different modalities, including unstructured text, semi-structured text and structured tabular data. We further employed an ensemble method to integrate all modality-specific models to generate ICD-10 codes. Key evidence was also extracted to make our prediction more convincing and explainable. We used the Medical Information Mart for Intensive Care III (MIMIC -III) dataset to validate our approach. For ICD code prediction, our best-performing model (micro-F1 = 0.7633, micro-AUC = 0.9541) significantly outperforms other baseline models including TF-IDF (micro-F1 = 0.6721, micro-AUC = 0.7879) and Text-CNN model (micro-F1 = 0.6569, micro-AUC = 0.9235). For interpretability, our approach achieves a Jaccard Similarity Coefficient (JSC) of 0.1806 on text data and 0.3105 on tabular data, where well-trained physicians achieve 0.2780 and 0.5002 respectively.Comment: Machine Learning for Healthcare 201

    Deep Neural Networks for Multi-Label Text Classification: Application to Coding Electronic Medical Records

    Get PDF
    Coding Electronic Medical Records (EMRs) with diagnosis and procedure codes is an essential task for billing, secondary data analyses, and monitoring health trends. Both speed and accuracy of coding are critical. While coding errors could lead to more patient-side financial burden and misinterpretation of a patient’s well-being, timely coding is also needed to avoid backlogs and additional costs for the healthcare facility. Therefore, it is necessary to develop automated diagnosis and procedure code recommendation methods that can be used by professional medical coders. The main difficulty with developing automated EMR coding methods is the nature of the label space. The standardized vocabularies used for medical coding contain over 10 thousand codes. The label space is large, and the label distribution is extremely unbalanced - most codes occur very infrequently, with a few codes occurring several orders of magnitude more than others. A few codes never occur in training dataset at all. In this work, we present three methods to handle the large unbalanced label space. First, we study how to augment EMR training data with biomedical data (research articles indexed on PubMed) to improve the performance of standard neural networks for text classification. PubMed indexes more than 23 million citations. Many of the indexed articles contain relevant information about diagnosis and procedure codes. Therefore, we present a novel method of incorporating this unstructured data in PubMed using transfer learning. Second, we combine ideas from metric learning with recent advances in neural networks to form a novel neural architecture that better handles infrequent codes. And third, we present new methods to predict codes that have never appeared in the training dataset. Overall, our contributions constitute advances in neural multi-label text classification with potential consequences for improving EMR coding

    Multi-label natural language processing to identify diagnosis and procedure codes from MIMIC-III inpatient notes

    Get PDF
    In the United States, 25% or greater than 200 billion dollars of hospital spending accounts for administrative costs that involve services for medical coding and billing. With the increasing number of patient records, manual assignment of the codes performed is overwhelming, time-consuming and error-prone, causing billing errors. Natural language processing can automate the extraction of codes/labels from unstructured clinical notes, which can aid human coders to save time, increase productivity, and verify medical coding errors. Our objective is to identify appropriate diagnosis and procedure codes from clinical notes by performing multi-label classification. We used de-identified data of critical care patients from the MIMIC-III database and subset the data to select the ten (top-10) and fifty (top-50) most common diagnoses and procedures, which covers 47.45% and 74.12% of all admissions respectively. We implemented state-of-the-art Bidirectional Encoder Representations from Transformers (BERT) to fine-tune the language model on 80% of the data and validated on the remaining 20%. The model achieved an overall accuracy of 87.08%, an F1 score of 85.82%, and an AUC of 91.76% for top-10 codes. For the top-50 codes, our model achieved an overall accuracy of 93.76%, an F1 score of 92.24%, and AUC of 91%. When compared to previously published research, our model outperforms in predicting codes from the clinical text. We discuss approaches to generalize the knowledge discovery process of our MIMIC-BERT to other clinical notes. This can help human coders to save time, prevent backlogs, and additional costs due to coding errors.Comment: This is a shortened version of the Capstone Project that was accepted by the Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Master of Science in Health Informatic

    Extreme multi-label deep neural classification of Spanish health records according to the International Classification of Diseases

    Get PDF
    111 p.Este trabajo trata sobre la minería de textos clínicos, un campo del Procesamiento del Lenguaje Natural aplicado al dominio biomédico. El objetivo es automatizar la tarea de codificación médica. Los registros electrónicos de salud (EHR) son documentos que contienen información clínica sobre la salud de unpaciente. Los diagnósticos y procedimientos médicos plasmados en la Historia Clínica Electrónica están codificados con respecto a la Clasificación Internacional de Enfermedades (CIE). De hecho, la CIE es la base para identificar estadísticas de salud internacionales y el estándar para informar enfermedades y condiciones de salud. Desde la perspectiva del aprendizaje automático, el objetivo es resolver un problema extremo de clasificación de texto de múltiples etiquetas, ya que a cada registro de salud se le asignan múltiples códigos ICD de un conjunto de más de 70 000 términos de diagnóstico. Una cantidad importante de recursos se dedican a la codificación médica, una laboriosa tarea que actualmente se realiza de forma manual. Los EHR son narraciones extensas, y los codificadores médicos revisan los registros escritos por los médicos y asignan los códigos ICD correspondientes. Los textos son técnicos ya que los médicos emplean una jerga médica especializada, aunque rica en abreviaturas, acrónimos y errores ortográficos, ya que los médicos documentan los registros mientras realizan la práctica clínica real. Paraabordar la clasificación automática de registros de salud, investigamos y desarrollamos un conjunto de técnicas de clasificación de texto de aprendizaje profundo
    • …
    corecore