25,698 research outputs found

    How Scale Affects Structure in Java Programs

    Full text link
    Many internal software metrics and external quality attributes of Java programs correlate strongly with program size. This knowledge has been used pervasively in quantitative studies of software through practices such as normalization on size metrics. This paper reports size-related super- and sublinear effects that have not been known before. Findings obtained on a very large collection of Java programs -- 30,911 projects hosted at Google Code as of Summer 2011 -- unveils how certain characteristics of programs vary disproportionately with program size, sometimes even non-monotonically. Many of the specific parameters of nonlinear relations are reported. This result gives further insights for the differences of "programming in the small" vs. "programming in the large." The reported findings carry important consequences for OO software metrics, and software research in general: metrics that have been known to correlate with size can now be properly normalized so that all the information that is left in them is size-independent.Comment: ACM Conference on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), October 2015. (Preprint

    JGraphT -- A Java library for graph data structures and algorithms

    Full text link
    Mathematical software and graph-theoretical algorithmic packages to efficiently model, analyze and query graphs are crucial in an era where large-scale spatial, societal and economic network data are abundantly available. One such package is JGraphT, a programming library which contains very efficient and generic graph data-structures along with a large collection of state-of-the-art algorithms. The library is written in Java with stability, interoperability and performance in mind. A distinctive feature of this library is the ability to model vertices and edges as arbitrary objects, thereby permitting natural representations of many common networks including transportation, social and biological networks. Besides classic graph algorithms such as shortest-paths and spanning-tree algorithms, the library contains numerous advanced algorithms: graph and subgraph isomorphism; matching and flow problems; approximation algorithms for NP-hard problems such as independent set and TSP; and several more exotic algorithms such as Berge graph detection. Due to its versatility and generic design, JGraphT is currently used in large-scale commercial, non-commercial and academic research projects. In this work we describe in detail the design and underlying structure of the library, and discuss its most important features and algorithms. A computational study is conducted to evaluate the performance of JGraphT versus a number of similar libraries. Experiments on a large number of graphs over a variety of popular algorithms show that JGraphT is highly competitive with other established libraries such as NetworkX or the BGL.Comment: Major Revisio

    Annotated bibliography of Software Engineering Laboratory literature

    Get PDF
    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. All materials have been grouped into eight general subject areas for easy reference: The Software Engineering Laboratory; The Software Engineering Laboratory: Software Development Documents; Software Tools; Software Models; Software Measurement; Technology Evaluations; Ada Technology; and Data Collection. Subject and author indexes further classify these documents by specific topic and individual author
    corecore