2,853 research outputs found

    A Note on Fuzzy Set--Valued Brownian Motion

    Get PDF
    In this paper, we prove that a fuzzy set--valued Brownian motion BtB_t, as defined in [1], can be handle by an RdR^d--valued Wiener process btb_t, in the sense that B_t =\indicator{b_t}; i.e. it is actually the indicator function of a Wiener process

    A decomposition theorem for fuzzy set-valued random variables and a characterization of fuzzy random translation

    Get PDF
    Let XX be a fuzzy set--valued random variable (\frv{}), and \huku{X} the family of all fuzzy sets BB for which the Hukuhara difference X\HukuDiff B exists P\mathbb{P}--almost surely. In this paper, we prove that XX can be decomposed as X(\omega)=C\Mink Y(\omega) for P\mathbb{P}--almost every ω∈Ω\omega\in\Omega, CC is the unique deterministic fuzzy set that minimizes E[d2(X,B)2]\mathbb{E}[d_2(X,B)^2] as BB is varying in \huku{X}, and YY is a centered \frv{} (i.e. its generalized Steiner point is the origin). This decomposition allows us to characterize all \frv{} translation (i.e. X(\omega) = M \Mink \indicator{\xi(\omega)} for some deterministic fuzzy convex set MM and some random element in \Banach). In particular, XX is an \frv{} translation if and only if the Aumann expectation EX\mathbb{E}X is equal to CC up to a translation. Examples, such as the Gaussian case, are provided.Comment: 12 pages, 1 figure. v2: minor revision. v3: minor revision; references, affiliation and acknowledgments added. Submitted versio

    Convex and Concave Soft Sets and Some Properties

    Full text link
    In this study, after given the definition of soft sets and their basic operations we define convex soft sets which is an important concept for operation research, optimization and related problems. Then, we define concave soft sets and give some properties for the concave sets. For these, we will use definition and properties of convex-concave fuzzy sets in literature. We also give different some properties for the convex and concave soft sets

    Resource theories of knowledge

    Full text link
    How far can we take the resource theoretic approach to explore physics? Resource theories like LOCC, reference frames and quantum thermodynamics have proven a powerful tool to study how agents who are subject to certain constraints can act on physical systems. This approach has advanced our understanding of fundamental physical principles, such as the second law of thermodynamics, and provided operational measures to quantify resources such as entanglement or information content. In this work, we significantly extend the approach and range of applicability of resource theories. Firstly we generalize the notion of resource theories to include any description or knowledge that agents may have of a physical state, beyond the density operator formalism. We show how to relate theories that differ in the language used to describe resources, like micro and macroscopic thermodynamics. Finally, we take a top-down approach to locality, in which a subsystem structure is derived from a global theory rather than assumed. The extended framework introduced here enables us to formalize new tasks in the language of resource theories, ranging from tomography, cryptography, thermodynamics and foundational questions, both within and beyond quantum theory.Comment: 28 pages featuring figures, examples, map and neatly boxed theorems, plus appendi
    • …
    corecore