916 research outputs found

    Adaptive Wireless Networking

    Get PDF
    This paper presents the Adaptive Wireless Networking (AWGN) project. The project aims to develop methods and technologies that can be used to design efficient adaptable and reconfigurable mobile terminals for future wireless communication systems. An overview of the activities in the project is given. Furthermore our vision on adaptivity in wireless communications and suggestions for future activities are presented

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    High-Level Design for Ultra-Fast Software Defined Radio Prototyping on Multi-Processors Heterogeneous Platforms

    Get PDF
    International audienceThe design of Software Defined Radio (SDR) equipments (terminals, base stations, etc.) is still very challenging. We propose here a design methodology for ultra-fast prototyping on heterogeneous platforms made of GPPs (General Purpose Processors), DSPs (Digital Signal Processors) and FPGAs (Field Programmable Gate Array). Lying on a component-based approach, the methodology mainly aims at automating as much as possible the design from an algorithmic validation to a multi-processing heterogeneous implementation. The proposed methodology is based on the SynDEx CAD design approach, which was originally dedicated to multi-GPPs networks. We show how this was changed so that it is made appropriate with an embedded context of DSP. The implication of FPGAs is then addressed and integrated in the design approach with very little restrictions. Apart from a manual HW/SW partitioning, all other operations may be kept automatic in a heterogeneous processing context. The targeted granularity of the components, which are to be assembled in the design flow, is roughly the same size as that of a FFT, a filter or a Viterbi decoder for instance. The re-use of third party or pre-developed IPs is a basis for this design approach. Thanks to the proposed design methodology it is possible to port "ultra" fast a radio application over several platforms. In addition, the proposed design methodology is not restricted to SDR equipment design, and can be useful for any real-time embedded heterogeneous design in a prototyping context

    Efficient Design and Implementation on FPGA of a MicroBlaze Peripheral for Processing Direct Electrical Networks Measurements

    Get PDF
    This contribution successfully accomplished the design and implementation of an advanced DSP circuit for direct measurements of electrical network parameters (RMS and real and reactive power) with application to network monitoring and quality assurance. The device is implemented on a mid-range Xilinx Spartan-3 family FPGA and includes an OPB interface so that it can be integrated as a standardperipheral ofa microprocessor system like the MicroBlaze. Special attention has been paid to resources optimization and accuracy with simulated error below l%.PROFIT-MITC OPENRTU FIT-330101-2004-5MYCT MEC META TEC 2004-00840/MICJunta de AndalucĂ­a CICE OFU TIC 102
    • 

    corecore