129 research outputs found

    The Three-Objective Optimization Model of Flexible Workshop Scheduling Problem for Minimizing Work Completion Time, Work Delay Time, and Energy Consumption

    Get PDF
    In recent years, the optimal design of the workshop schedule has received much attention with the increased competition in the business environment. As a strategic issue, designing a workshop schedule affects other decisions in the production chain. The purpose of this thesis is to design a three-objective mathematical model, with the objectives of minimizing work completion time, work delay time and energy consumption, considering the importance of businesses attention to reduce energy consumption in recent years. The developed model has been solved using exact solution methods of Weighted Sum (WS) and Epsilon Constraint (Ɛ) in small dimensions using GAMS software. These problems were also solved in large-scale problems with NSGA-II and SFLA meta-heuristic algorithms using MATLAB software in single-objective and multi-objective mode due to the NP-Hard nature of this group of large and real dimensional problems. The standard BRdata set of problems were used to investigate the algorithms performance in solving these problems so that it is possible to compare the algorithms performance of this research with the results of the algorithms used by other researchers. The obtained results show the relatively appropriate performance of these algorithms in solving these problems and also the much better and more optimal performance of the NSGA-II algorithm compared to the performance of the SFLA algorithm

    Current Studies and Applications of Krill Herd and Gravitational Search Algorithms in Healthcare

    Full text link
    Nature-Inspired Computing or NIC for short is a relatively young field that tries to discover fresh methods of computing by researching how natural phenomena function to find solutions to complicated issues in many contexts. As a consequence of this, ground-breaking research has been conducted in a variety of domains, including synthetic immune functions, neural networks, the intelligence of swarm, as well as computing of evolutionary. In the domains of biology, physics, engineering, economics, and management, NIC techniques are used. In real-world classification, optimization, forecasting, and clustering, as well as engineering and science issues, meta-heuristics algorithms are successful, efficient, and resilient. There are two active NIC patterns: the gravitational search algorithm and the Krill herd algorithm. The study on using the Krill Herd Algorithm (KH) and the Gravitational Search Algorithm (GSA) in medicine and healthcare is given a worldwide and historical review in this publication. Comprehensive surveys have been conducted on some other nature-inspired algorithms, including KH and GSA. The various versions of the KH and GSA algorithms and their applications in healthcare are thoroughly reviewed in the present article. Nonetheless, no survey research on KH and GSA in the healthcare field has been undertaken. As a result, this work conducts a thorough review of KH and GSA to assist researchers in using them in diverse domains or hybridizing them with other popular algorithms. It also provides an in-depth examination of the KH and GSA in terms of application, modification, and hybridization. It is important to note that the goal of the study is to offer a viewpoint on GSA with KH, particularly for academics interested in investigating the capabilities and performance of the algorithm in the healthcare and medical domains.Comment: 35 page

    Development of a Multi-Objective Scheduling System for Complex Job Shops in a Manufacturing Environment

    Get PDF
    In many sectors of commercial operation, the scheduling of workflows and the allocation of resources at an optimum time is critical; for effective and efficient operation. The high degree of complexity of a “Job Shop” manufacturing environment, with sequencing of many parallel orders, and allocation of resources within multi-objective operational criteria, has been subject to several research studies. In this thesis, a scheduling system for optimizing multi-objective job shop scheduling problems was developed in order to satisfy different production system requirements. The developed system incorporated three different factors; setup times, alternative machines and release dates, into one model. These three factors were considered after a survey study of multiobjective job shop scheduling problems. In order to solve the multi-objective job shop scheduling problems, a combination of genetic algorithm and a modified version of a very recent and computationally efficient approach to non-dominated sorting solutions, called “efficient non-dominated sort using the backward pass sequential strategy”, was applied. In the proposed genetic algorithm, an operation based representation was designed in the matrix form, which can preserve features of the parent after the crossover operator without repairing the solution. The proposed efficient non-dominated sort using the backward pass sequential strategy was employed to determine the front, to which each solution belongs. The proposed system was tested and validated with 20 benchmark problems after they have been modified. The experimental results show that the proposed system was effective and efficient to solve multi-objective job shop scheduling problems in terms of solution quality

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field
    corecore