63 research outputs found

    Sard Property for the endpoint map on some Carnot groups

    Get PDF
    In Carnot-Caratheodory or sub-Riemannian geometry, one of the major open problems is whether the conclusions of Sard's theorem holds for the endpoint map, a canonical map from an infinite-dimensional path space to the underlying finite-dimensional manifold. The set of critical values for the endpoint map is also known as abnormal set, being the set of endpoints of abnormal extremals leaving the base point. We prove that a strong version of Sard's property holds for all step-2 Carnot groups and several other classes of Lie groups endowed with left-invariant distributions. Namely, we prove that the abnormal set lies in a proper analytic subvariety. In doing so we examine several characterizations of the abnormal set in the case of Lie groups.Comment: 39 page

    Feynman integral relations from parametric annihilators

    Full text link
    We study shift relations between Feynman integrals via the Mellin transform through parametric annihilation operators. These contain the momentum space IBP relations, which are well-known in the physics literature. Applying a result of Loeser and Sabbah, we conclude that the number of master integrals is computed by the Euler characteristic of the Lee-Pomeransky polynomial. We illustrate techniques to compute this Euler characteristic in various examples and compare it with numbers of master integrals obtained in previous works.Comment: v2: new section 3.1 added, several misprints corrected and additional remark

    Chevalley's restriction theorem for reductive symmetric superpairs

    Get PDF
    Let (g,k) be a reductive symmetric superpair of even type, i.e. so that there exists an even Cartan subspace a in p. The restriction map S(p^*)^k->S(a^*)^W where W=W(g_0:a) is the Weyl group, is injective. We determine its image explicitly. In particular, our theorem applies to the case of a symmetric superpair of group type, i.e. (k+k,k) with the flip involution where k is a classical Lie superalgebra with a non-degenerate invariant even form (equivalently, a finite-dimensional contragredient Lie superalgebra). Thus, we obtain a new proof of the generalisation of Chevalley's restriction theorem due to Sergeev and Kac, Gorelik. For general symmetric superpairs, the invariants exhibit a new and surprising behaviour. We illustrate this phenomenon by a detailed discussion in the example g=C(q+1)=osp(2|2q,C), endowed with a special involution. In this case, the invariant algebra defines a singular algebraic curve.Comment: 35 pages; v4: revised submission to J.Alg., accepted for publication under the proviso of revisio

    On the uniqueness of higher-spin symmetries in AdS and CFT

    Get PDF
    We study the uniqueness of higher-spin algebras which are at the core of higher-spin theories in AdS and of CFTs with exact higher-spin symmetry, i.e. conserved tensors of rank greater than two. The Jacobi identity for the gauge algebra is the simplest consistency test that appears at the quartic order for a gauge theory. Similarly, the algebra of charges in a CFT must also obey the Jacobi identity. These algebras are essentially the same. Solving the Jacobi identity under some simplifying assumptions spelled out, we obtain that the Eastwood-Vasiliev algebra is the unique solution for d=4 and d>6. In 5d there is a one-parameter family of algebras that was known before. In particular, we show that the introduction of a single higher-spin gauge field/current automatically requires the infinite tower of higher-spin gauge fields/currents. The result implies that from all the admissible non-Abelian cubic vertices in AdS(d), that have been recently classified for totally symmetric higher-spin gauge fields, only one vertex can pass the Jacobi consistency test. This cubic vertex is associated with a gauge deformation that is the germ of the Eastwood-Vasiliev's higher-spin algebra.Comment: 37 pages; refs added, proof of uniquiness was improve

    Topics in arithmetic combinatorics

    Get PDF
    E-thesis pagination differs from approved hard bound copy, Cambridge University Library classmark: PhD.30726This thesis is chiefly concerned with a classical conjecture of Littlewood's regarding the L^1-norm of the Fourier transform, and the closely related idempotent theorem. The vast majority of the results regarding these problems are, in some sense, qualitative or at the very least infinitary and it has become increasingly apparent that a quantitative state of affairs is desirable. Broadly speaking, the first part of the thesis develops three new tools for tackling the problems above: We prove a new structural theorem for the spectrum of functions in A(G); we extend the notion of local Fourier analysis, pioneered by Bourgain, to a much more general structure, and localize Chang's classic structure theorem as well as our own spectral structure theorem; and we refine some aspects of Freiman's celebrated theorem regarding the structure of sets with small doubling. These tools lead to improvements in a number of existing additive results which we indicate, but for us the main purpose is in application to the analytic problems mentioned above. The second part of the thesis discusses a natural version of Littlewood's problem for finite abelian groups. Here the situation varies wildly with the underlying group and we pay special attention first to the finite field case (where we use Chang's Theorem) and then to the case of residues modulo a prime where we require our new local structure theorem for A(G). We complete the consideration of Littlewood's problem for finite abelian groups by using the local version of Chang's Theorem we have developed. Finally we deploy the Freiman tools along with the extended Fourier analytic techniques to yield a fully quantitative version of the idempotent theorem

    A PDE Approach to the Combinatorics of the Full Map Enumeration Problem: Exact Solutions and their Universal Character

    Full text link
    Maps are polygonal cellular networks on Riemann surfaces. This paper completes a program of constructing closed form general representations for the enumerative generating functions associated to maps of fixed but arbitrary genus. These closed form expressions have a universal character in the sense that they are independent of the explicit valence distribution of the tiling polygons. Nevertheless the valence distributions may be recovered from the closed form generating functions by a remarkable {\it unwinding identity} in terms of the Appell polynomials generated by Bessel functions. Our treatment, based on random matrix theory and Riemann-Hilbert problems for orthogonal polynomials reveals the generating functions to be solutions of nonlinear conservation laws and their prolongations. This characterization enables one to gain insights that go beyond more traditional methods that are purely combinatorial. Universality results are connected to stability results for characteristic singularities of conservation laws that were studied by Caflisch, Ercolani, Hou and Landis as well as directly related to universality results for random matrix spectra as described by Deift, Kriecherbauer, McLaughlin, Venakides and Zhou
    • …
    corecore