2,106 research outputs found

    A monolithic fluid-structure interaction formulation for solid and liquid membranes including free-surface contact

    Full text link
    A unified fluid-structure interaction (FSI) formulation is presented for solid, liquid and mixed membranes. Nonlinear finite elements (FE) and the generalized-alpha scheme are used for the spatial and temporal discretization. The membrane discretization is based on curvilinear surface elements that can describe large deformations and rotations, and also provide a straightforward description for contact. The fluid is described by the incompressible Navier-Stokes equations, and its discretization is based on stabilized Petrov-Galerkin FE. The coupling between fluid and structure uses a conforming sharp interface discretization, and the resulting non-linear FE equations are solved monolithically within the Newton-Raphson scheme. An arbitrary Lagrangian-Eulerian formulation is used for the fluid in order to account for the mesh motion around the structure. The formulation is very general and admits diverse applications that include contact at free surfaces. This is demonstrated by two analytical and three numerical examples exhibiting strong coupling between fluid and structure. The examples include balloon inflation, droplet rolling and flapping flags. They span a Reynolds-number range from 0.001 to 2000. One of the examples considers the extension to rotation-free shells using isogeometric FE.Comment: 38 pages, 17 figure

    On-demand Aerodynamics in Integrally Actuated Membranes with Feedback Control

    Get PDF
    This paper is a numerical investigation on model reduction and control system design of integrally actuated membrane wings. A high-fidelity electro-aeromechanical model is used for the simulation of the dynamic fluid-structure interaction between a low-Reynolds-number flow and a dielectric elastomeric wing. Two reduced-order models with different levels of complexity are then derived. They are based on the projection of the fullorder discretisation of fluid and structure on modal shapes obtained from eigenvalue analysis and Proper Orthogonal Decomposition. The low-order systems are then used for the design of Proportional-Integral-Derivative and Linear Quadratic Gaussian feedback schemes to control wing lift. When implemented in the full-order model, closed-loop dynamics are in very good agreement with the reduced-order model for both tracking and gust rejection, demonstrating the suitability of the approach. The control laws selected in this work were found to be effective only for low-frequency disturbances due to the large phase delay introduced by the fluid convective time-scales, but results demonstrate the potential for the aerodynamic control of membrane wings in outdoor flight using dielectric elastomers

    Reduced-order modelling of vortex-induced vibration of catenary riser

    Get PDF
    A new reduced-order model capable of analyzing the vortex-induced vibration of catenary riser in the ocean current has been developed. This semi analytical-numerical approach is versatile and allows for a significant reduction in computational effort for the analysis of fluid-riser interactions. The incoming current flow is assumed to be steady, uniform, unidirectional and perpendicular to the riser plane of initial equilibrium curvatures. The equations of riser 3-D motion are based on a pinned-pinned, tensioned-beam or flexural cable, modelling which accounts for overall effects of riser bending, extensibility, sag, inclination and structural nonlinearities. The unsteady hydrodynamic forces associated with cross-flow and in-line vibrations are modelled as distributed van der Pol wake oscillators. This hydrodynamic model has been modified in order to capture the effect of varying initial curvatures of the inclined flexible cylinder and to describe the space-time fluctuation of lift and drag forces. Depending on the vortex-excited in-plane/out-of-plane modes and system fluid-structure parameters, the parametric studies are carried out to determine the maximum response amplitudes of catenary risers, along with the occurrence of uni-modal lock-in phenomenon. The obtained results highlight the effect of initial curvatures and geometric nonlinearities on the nonlinear dynamics of riser undergoing vortex-induced vibration
    • …
    corecore