30 research outputs found

    Exact and non-exact procedures for solving the response time variability problem (RTVP)

    Get PDF
    Premi extraordinari doctorat curs 2009-2010, àmbit d’Enginyeria IndustrialCuando se ha de compartir un recurso entre demandas (de productos, clientes, tareas, etc.) competitivas que requieren una atención regular, es importante programar el derecho al acceso del recurso de alguna forma justa de manera que cada producto, cliente o tarea reciba un acceso al recurso proporcional a su demanda relativa al total de las demandas competitivas. Este tipo de problemas de secuenciación pueden ser generalizados bajo el siguiente esquema. Dados n símbolos, cada uno con demanda di (i = 1,...,n), se ha de generar una secuencia justa o regular donde cada símbolo aparezca di veces. No existe una definición universal de justicia, ya que puede haber varias métricas razonables para medirla según el problema específico considerado. En el Problema de Variabilidad en el Tiempo de Respuesta, o Response Time Variability Problem (RTVP) en inglés, la injusticia o irregularidad de una secuencia es medida como la suma, para todos los símbolos, de sus variabilidades en las distancias en que las copias de cada símbolo son secuenciados. Así, el objetivo del RTVP es encontrar la secuencia que minimice la variabilidad total. En otras palabras, el objetivo del RTVP es minimizar la variabilidad de los instantes en que los productos, clientes o trabajos reciben el recurso necesario. Este problema aparece en una amplia variedad de situaciones de la vida real; entre otras, secuenciación en líneas de modelo-mixto bajo just-in-time (JIT), en asignación de recursos en sistemas computacionales multi-hilo como sistemas operativos, servidores de red y aplicaciones mutimedia, en el mantenimiento periódico de maquinaria, en la recolección de basura, en la programación de comerciales en televisión y en el diseño de rutas para agentes comerciales con múltiples visitas a un mismo cliente. En algunos de estos problemas la regularidad no es una propiedad deseable por sí misma, si no que ayuda a minimizar costes. De hecho, cuando los costes son proporcionales al cuadrado de las distancias, el problema de minimizar costes y el RTVP son equivalentes. El RTVP es muy difícil de resolver (se ha demostrado que es NP-hard). El tamaño de las instancias del RTVP que pueden ser resueltas óptimamente con el mejor método exacto existente en la literatura tiene un límite práctico de 40 unidades. Por otro lado, los métodos no exactos propuestos en la literatura para resolver instancias mayores consisten en heurísticos simples que obtienen soluciones rápidamente, pero cuya calidad puede ser mejorada. Por tanto, los métodos de resolución existentes en la literatura son insuficientes. El principal objetivo de esta tesis es mejorar la resolución del RTVP. Este objetivo se divide en los dos siguientes subobjetivos : 1) aumentar el tamaño de las instancias del RTVP que puedan ser resueltas de forma óptima en un tiempo de computación práctico, y 2) obtener de forma eficiente soluciones lo más cercanas a las óptimas para instancias mayores. Además, la tesis tiene los dos siguientes objetivos secundarios: a) investigar el uso de metaheurísticos bajo el esquema de los hiper-heurísticos, y b) diseñar un procedimiento sistemático y automático para fijar los valores adecuados a los parámetros de los algoritmos. Se han desarrollado diversos métodos para alcanzar los objetivos anteriormente descritos. Para la resolución del RTVP se ha diseñado un método exacto basado en la técnica branch and bound y el tamaño de las instancias que pueden resolverse en un tiempo práctico se ha incrementado a 55 unidades. Para instancias mayores, se han diseñado métodos heurísticos, metaheurísticos e hiper-heurísticos, los cuales pueden obtener soluciones óptimas o casi óptimas rápidamente. Además, se ha propuesto un procedimiento sistemático y automático para tunear parámetros que aprovecha las ventajas de dos procedimientos existentes (el algoritmo Nelder & Mead y CALIBRA).When a resource must be shared between competing demands (of products, clients, jobs, etc.) that require regular attention, it is important to schedule the access right to the resource in some fair manner so that each product, client or job receives a share of the resource that is proportional to its demand relative to the total of the competing demands. These types of sequencing problems can be generalized under the following scheme. Given n symbols, each one with demand di (i = 1,...,n), a fair or regular sequence must be built in which each symbol appears di times. There is not a universal definition of fairness, as several reasonable metrics to measure it can be defined according to the specific considered problem. In the Response Time Variability Problem (RTVP), the unfairness or the irregularity of a sequence is measured by the sum, for all symbols, of their variabilities in the positions at which the copies of each symbol are sequenced. Thus, the objective of the RTVP is to find the sequence that minimises the total variability. In other words, the RTVP objective is to minimise the variability in the instants at which products, clients or jobs receive the necessary resource. This problem appears in a broad range of real-world areas. Applications include sequencing of mixed-model assembly lines under just-in-time (JIT), resource allocation in computer multi-threaded systems such as operating systems, network servers and media-based applications, periodic machine maintenance, waste collection, scheduling commercial videotapes for television and designing of salespeople's routes with multiple visits, among others. In some of these problems the regularity is not a property desirable by itself, but it helps to minimise costs. In fact, when the costs are proportional to the square of the distances, the problem of minimising costs and the RTVP are equivalent. The RTVP is very hard to be solved (it has been demonstrated that it is NP-hard). The size of the RTVP instances that can be solved optimally with the best exact method existing in the literature has a practical limit of 40 units. On the other hand, the non-exact methods proposed in the literature to solve larger instances are simple heuristics that obtains solutions quickly, but the quality of the obtained solutions can be improved. Thus, the solution methods existing in the literature are not enough to solve the RTVP. The main objective of this thesis is to improve the resolution of the RTVP. This objective is split in the two following sub-objectives: 1) to increase the size of the RTVP instances that can be solved optimally in a practical computing time; and 2) to obtain efficiently near-optimal solutions for larger instances. Moreover, the thesis has the following two secondary objectives: a) to research the use of metaheuristics under the scheme of hyper-heuristics, and b) to design a systematic, hands-off procedure to set the suitable values of the algorithm parameters. To achieve the aforementioned objectives, several procedures have been developed. To solve the RTVP an exact procedure based on the branch and bound technique has been designed and the size of the instances that can be solved in a practical time has been increased to 55 units. For larger instances, heuristic, heuristic, metaheuristic and hyper-heuristic procedures have been designed, which can obtain optimal or near-optimal solutions quickly. Moreover, a systematic, hands-off fine-tuning method that takes advantage of the two existing ones (Nelder & Mead algorithm and CALIBRA) has been proposed.Award-winningPostprint (published version

    Exact and non-exact procedures for solving the response time variability problem (RTVP)

    Get PDF
    Cuando se ha de compartir un recurso entre demandas (de productos, clientes, tareas, etc.) competitivas que requieren una atención regular, es importante programar el derecho al acceso del recurso de alguna forma justa de manera que cada producto, cliente o tarea reciba un acceso al recurso proporcional a su demanda relativa al total de las demandas competitivas. Este tipo de problemas de secuenciación pueden ser generalizados bajo el siguiente esquema. Dados n símbolos, cada uno con demanda di (i = 1,...,n), se ha de generar una secuencia justa o regular donde cada símbolo aparezca di veces. No existe una definición universal de justicia, ya que puede haber varias métricas razonables para medirla según el problema específico considerado. En el Problema de Variabilidad en el Tiempo de Respuesta, o Response Time Variability Problem (RTVP) en inglés, la injusticia o irregularidad de una secuencia es medida como la suma, para todos los símbolos, de sus variabilidades en las distancias en que las copias de cada símbolo son secuenciados. Así, el objetivo del RTVP es encontrar la secuencia que minimice la variabilidad total. En otras palabras, el objetivo del RTVP es minimizar la variabilidad de los instantes en que los productos, clientes o trabajos reciben el recurso necesario. Este problema aparece en una amplia variedad de situaciones de la vida real; entre otras, secuenciación en líneas de modelo-mixto bajo just-in-time (JIT), en asignación de recursos en sistemas computacionales multi-hilo como sistemas operativos, servidores de red y aplicaciones mutimedia, en el mantenimiento periódico de maquinaria, en la recolección de basura, en la programación de comerciales en televisión y en el diseño de rutas para agentes comerciales con múltiples visitas a un mismo cliente. En algunos de estos problemas la regularidad no es una propiedad deseable por sí misma, si no que ayuda a minimizar costes. De hecho, cuando los costes son proporcionales al cuadrado de las distancias, el problema de minimizar costes y el RTVP son equivalentes. El RTVP es muy difícil de resolver (se ha demostrado que es NP-hard). El tamaño de las instancias del RTVP que pueden ser resueltas óptimamente con el mejor método exacto existente en la literatura tiene un límite práctico de 40 unidades. Por otro lado, los métodos no exactos propuestos en la literatura para resolver instancias mayores consisten en heurísticos simples que obtienen soluciones rápidamente, pero cuya calidad puede ser mejorada. Por tanto, los métodos de resolución existentes en la literatura son insuficientes. El principal objetivo de esta tesis es mejorar la resolución del RTVP. Este objetivo se divide en los dos siguientes subobjetivos : 1) aumentar el tamaño de las instancias del RTVP que puedan ser resueltas de forma óptima en un tiempo de computación práctico, y 2) obtener de forma eficiente soluciones lo más cercanas a las óptimas para instancias mayores. Además, la tesis tiene los dos siguientes objetivos secundarios: a) investigar el uso de metaheurísticos bajo el esquema de los hiper-heurísticos, y b) diseñar un procedimiento sistemático y automático para fijar los valores adecuados a los parámetros de los algoritmos. Se han desarrollado diversos métodos para alcanzar los objetivos anteriormente descritos. Para la resolución del RTVP se ha diseñado un método exacto basado en la técnica branch and bound y el tamaño de las instancias que pueden resolverse en un tiempo práctico se ha incrementado a 55 unidades. Para instancias mayores, se han diseñado métodos heurísticos, metaheurísticos e hiper-heurísticos, los cuales pueden obtener soluciones óptimas o casi óptimas rápidamente. Además, se ha propuesto un procedimiento sistemático y automático para tunear parámetros que aprovecha las ventajas de dos procedimientos existentes (el algoritmo Nelder & Mead y CALIBRA).When a resource must be shared between competing demands (of products, clients, jobs, etc.) that require regular attention, it is important to schedule the access right to the resource in some fair manner so that each product, client or job receives a share of the resource that is proportional to its demand relative to the total of the competing demands. These types of sequencing problems can be generalized under the following scheme. Given n symbols, each one with demand di (i = 1,...,n), a fair or regular sequence must be built in which each symbol appears di times. There is not a universal definition of fairness, as several reasonable metrics to measure it can be defined according to the specific considered problem. In the Response Time Variability Problem (RTVP), the unfairness or the irregularity of a sequence is measured by the sum, for all symbols, of their variabilities in the positions at which the copies of each symbol are sequenced. Thus, the objective of the RTVP is to find the sequence that minimises the total variability. In other words, the RTVP objective is to minimise the variability in the instants at which products, clients or jobs receive the necessary resource. This problem appears in a broad range of real-world areas. Applications include sequencing of mixed-model assembly lines under just-in-time (JIT), resource allocation in computer multi-threaded systems such as operating systems, network servers and media-based applications, periodic machine maintenance, waste collection, scheduling commercial videotapes for television and designing of salespeople's routes with multiple visits, among others. In some of these problems the regularity is not a property desirable by itself, but it helps to minimise costs. In fact, when the costs are proportional to the square of the distances, the problem of minimising costs and the RTVP are equivalent. The RTVP is very hard to be solved (it has been demonstrated that it is NP-hard). The size of the RTVP instances that can be solved optimally with the best exact method existing in the literature has a practical limit of 40 units. On the other hand, the non-exact methods proposed in the literature to solve larger instances are simple heuristics that obtains solutions quickly, but the quality of the obtained solutions can be improved. Thus, the solution methods existing in the literature are not enough to solve the RTVP. The main objective of this thesis is to improve the resolution of the RTVP. This objective is split in the two following sub-objectives: 1) to increase the size of the RTVP instances that can be solved optimally in a practical computing time; and 2) to obtain efficiently near-optimal solutions for larger instances. Moreover, the thesis has the following two secondary objectives: a) to research the use of metaheuristics under the scheme of hyper-heuristics, and b) to design a systematic, hands-off procedure to set the suitable values of the algorithm parameters. To achieve the aforementioned objectives, several procedures have been developed. To solve the RTVP an exact procedure based on the branch and bound technique has been designed and the size of the instances that can be solved in a practical time has been increased to 55 units. For larger instances, heuristic, heuristic, metaheuristic and hyper-heuristic procedures have been designed, which can obtain optimal or near-optimal solutions quickly. Moreover, a systematic, hands-off fine-tuning method that takes advantage of the two existing ones (Nelder & Mead algorithm and CALIBRA) has been proposed

    Models and Algorithms for the Optimisation of Replenishment, Production and Distribution Plans in Industrial Enterprises

    Full text link
    Tesis por compendio[ES] La optimización en las empresas manufactureras es especialmente importante, debido a las grandes inversiones que realizan, ya que a veces estas inversiones no obtienen el rendimiento esperado porque los márgenes de beneficio de los productos son muy ajustados. Por ello, las empresas tratan de maximizar el uso de los recursos productivos y financieros minimizando el tiempo perdido y, al mismo tiempo, mejorando los flujos de los procesos y satisfaciendo las necesidades del mercado. El proceso de planificación es una actividad crítica para las empresas. Esta tarea implica grandes retos debido a los cambios del mercado, las alteraciones en los procesos de producción dentro de la empresa y en la cadena de suministro, y los cambios en la legislación, entre otros. La planificación del aprovisionamiento, la producción y la distribución desempeña un papel fundamental en el rendimiento de las empresas manufactureras, ya que una planificación ineficaz de los proveedores, los procesos de producción y los sistemas de distribución contribuye a aumentar los costes de los productos, a alargar los plazos de entrega y a reducir los beneficios. La planificación eficaz es un proceso complejo que abarca una amplia gama de actividades para garantizar que los equipos, los materiales y los recursos humanos estén disponibles en el momento y el lugar adecuados. Motivados por la complejidad de la planificación en las empresas manufactureras, esta tesis estudia y desarrolla herramientas cuantitativas para ayudar a los planificadores en los procesos de la planificación del aprovisionamiento, producción y distribución. Desde esta perspectiva, se proponen modelos realistas y métodos eficientes para apoyar la toma de decisiones en las empresas industriales, principalmente en las pequeñas y medianas empresas (PYMES). Las aportaciones de esta tesis suponen un avance científico basado en una exhaustiva revisión bibliográfica sobre la planificación del aprovisionamiento, la producción y la distribución que ayuda a comprender los principales modelos y algoritmos utilizados para resolver estos planes, y pone en relieve las tendencias y las futuras direcciones de investigación. También proporciona un marco holístico para caracterizar los modelos y algoritmos centrándose en la planificación de la producción, la programación y la secuenciación. Esta tesis también propone una herramienta de apoyo a la decisión para seleccionar un algoritmo o método de solución para resolver problemas concretos de la planificación del aprovisionamiento, producción y distribución en función de su complejidad, lo que permite a los planificadores no duplicar esfuerzos de modelización o programación de técnicas de solución. Por último, se desarrollan nuevos modelos matemáticos y enfoques de solución de última generación, como los algoritmos matheurísticos, que combinan la programación matemática y las técnicas metaheurísticas. Los nuevos modelos y algoritmos comprenden mejoras en términos de rendimiento computacional, e incluyen características realistas de los problemas del mundo real a los que se enfrentan las empresas de fabricación. Los modelos matemáticos han sido validados con un caso de una importante empresa del sector de la automoción en España, lo que ha permitido evaluar la relevancia práctica de estos novedosos modelos utilizando instancias de gran tamaño, similares a las existentes en la empresa objeto de estudio. Además, los algoritmos matheurísticos han sido probados utilizando herramientas libres y de código abierto. Esto también contribuye a la práctica de la investigación operativa, y proporciona una visión de cómo desplegar estos métodos de solución y el tiempo de cálculo y rendimiento de la brecha que se puede obtener mediante el uso de software libre o de código abierto.[CA] L'optimització a les empreses manufactureres és especialment important, a causa de les grans inversions que realitzen, ja que de vegades aquestes inversions no obtenen el rendiment esperat perquè els marges de benefici dels productes són molt ajustats. Per això, les empreses intenten maximitzar l'ús dels recursos productius i financers minimitzant el temps perdut i, alhora, millorant els fluxos dels processos i satisfent les necessitats del mercat. El procés de planificació és una activitat crítica per a les empreses. Aquesta tasca implica grans reptes a causa dels canvis del mercat, les alteracions en els processos de producció dins de l'empresa i la cadena de subministrament, i els canvis en la legislació, entre altres. La planificació de l'aprovisionament, la producció i la distribució té un paper fonamental en el rendiment de les empreses manufactureres, ja que una planificació ineficaç dels proveïdors, els processos de producció i els sistemes de distribució contribueix a augmentar els costos dels productes, allargar els terminis de lliurament i reduir els beneficis. La planificació eficaç és un procés complex que abasta una àmplia gamma d'activitats per garantir que els equips, els materials i els recursos humans estiguen disponibles al moment i al lloc adequats. Motivats per la complexitat de la planificació a les empreses manufactureres, aquesta tesi estudia i desenvolupa eines quantitatives per ajudar als planificadors en els processos de la planificació de l'aprovisionament, producció i distribució. Des d'aquesta perspectiva, es proposen models realistes i mètodes eficients per donar suport a la presa de decisions a les empreses industrials, principalment a les petites i mitjanes empreses (PIMES). Les aportacions d'aquesta tesi suposen un avenç científic basat en una exhaustiva revisió bibliogràfica sobre la planificació de l'aprovisionament, la producció i la distribució que ajuda a comprendre els principals models i algorismes utilitzats per resoldre aquests plans, i posa de relleu les tendències i les futures direccions de recerca. També proporciona un marc holístic per caracteritzar els models i algorismes centrant-se en la planificació de la producció, la programació i la seqüenciació. Aquesta tesi també proposa una eina de suport a la decisió per seleccionar un algorisme o mètode de solució per resoldre problemes concrets de la planificació de l'aprovisionament, producció i distribució en funció de la seua complexitat, cosa que permet als planificadors no duplicar esforços de modelització o programació de tècniques de solució. Finalment, es desenvolupen nous models matemàtics i enfocaments de solució d'última generació, com ara els algoritmes matheurístics, que combinen la programació matemàtica i les tècniques metaheurístiques. Els nous models i algoritmes comprenen millores en termes de rendiment computacional, i inclouen característiques realistes dels problemes del món real a què s'enfronten les empreses de fabricació. Els models matemàtics han estat validats amb un cas d'una important empresa del sector de l'automoció a Espanya, cosa que ha permés avaluar la rellevància pràctica d'aquests nous models utilitzant instàncies grans, similars a les existents a l'empresa objecte d'estudi. A més, els algorismes matheurístics han estat provats utilitzant eines lliures i de codi obert. Això també contribueix a la pràctica de la investigació operativa, i proporciona una visió de com desplegar aquests mètodes de solució i el temps de càlcul i rendiment de la bretxa que es pot obtindre mitjançant l'ús de programari lliure o de codi obert.[EN] Optimisation in manufacturing companies is especially important, due to the large investments they make, as sometimes these investments do not obtain the expected return because the profit margins of products are very tight. Therefore, companies seek to maximise the use of productive and financial resources by minimising lost time and, at the same time, improving process flows while meeting market needs. The planning process is a critical activity for companies. This task involves great challenges due to market changes, alterations in production processes within the company and in the supply chain, and changes in legislation, among others. Planning of replenishment, production and distribution plays a critical role in the performance of manufacturing companies because ineffective planning of suppliers, production processes and distribution systems contributes to higher product costs, longer lead times and less profits. Effective planning is a complex process that encompasses a wide range of activities to ensure that equipment, materials and human resources are available in the right time and the right place. Motivated by the complexity of planning in manufacturing companies, this thesis studies and develops quantitative tools to help planners in the replenishment, production and delivery planning processes. From this perspective, realistic models and efficient methods are proposed to support decision making in industrial companies, mainly in small- and medium-sized enterprises (SMEs). The contributions of this thesis represent a scientific breakthrough based on a comprehensive literature review about replenishment, production and distribution planning that helps to understand the main models and algorithms used to solve these plans, and highlights trends and future research directions. It also provides a holistic framework to characterise models and algorithms by focusing on production planning, scheduling and sequencing. This thesis also proposes a decision support tool for selecting an algorithm or solution method to solve concrete replenishment, production and distribution planning problems according to their complexity, which allows planners to not duplicate efforts modelling or programming solution techniques. Finally, new state-of-the-art mathematical models and solution approaches are developed, such as matheuristic algorithms, which combine mathematical programming and metaheuristic techniques. The new models and algorithms comprise improvements in computational performance terms, and include realistic features of real-world problems faced by manufacturing companies. The mathematical models have been validated with a case of an important company in the automotive sector in Spain, which allowed to evaluate the practical relevance of these novel models using large instances, similarly to those existing in the company under study. In addition, the matheuristic algorithms have been tested using free and open-source tools. This also helps to contribute to the practice of operations research, and provides insight into how to deploy these solution methods and the computational time and gap performance that can be obtained by using free or open-source software.This work would not have been possible without the following funding sources: Conselleria de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana for hiring predoctoral research staff with Grant (ACIF/2018/170) and the European Social Fund with the Grant Operational Programme of FSE 2014-2020. Conselleria de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana for predoctoral contract students to stay in research centers outside the research centers outside the Valencian Community (BEFPI/2021/040) and the European Social Fund.Guzmán Ortiz, BE. (2022). Models and Algorithms for the Optimisation of Replenishment, Production and Distribution Plans in Industrial Enterprises [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/187461Compendi

    An Accelerating Two-Layer Anchor Search With Application to the Resource-Constrained Project Scheduling Problem

    Full text link

    Traveling Salesman Problem

    Get PDF
    The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance

    Métaheuristiques hybrides pour les problèmes de recouvrement et recouvrement partiel d'ensembles appliqués au problème de positionnement des trous de forage dans les mines

    Get PDF
    RÉSUMÉ La première étape du cycle minier est l’exploration minérale. Dans cette étape, des longs trous de forage sont forés dans les zones de minéralisation pour extraire des échantillons. Les échantillons sont ensuite analysés et un modèle 3D de la distribution des minéraux dans la mine est construit. Puisque le forage coûte très cher, les géologues et ingénieurs miniers tentent de positionner leurs trous d’une façon qui minimise le coût de forage. Par contre, les techniques courantes utilisées pour minimiser le coût de forage sont peu sophistiquées et ne trouvent généralement pas la solution optimale. Dans cette thèse, nous utilisons des techniques de recherche opérationnelle pour résoudre le problème de positionnement des trous de forage dans les mines. Nous modélisons le problème sous forme d’une variante du problème de recouvrement d’ensembles, qui est un problème très populaire en recherche opérationnelle, et résolvons ce problème à l’aide d’algorithmes métaheuristiques, notamment l’algorithme génétique, la recherche locale itérée et la recherche taboue. Pour évaluer l’efficacité de notre approche, nous comparons les solutions trouvées par notre approche aux solutions trouvées par les approches industrielles sur des problèmes réels. Les résultats obtenus montrent que notre approche permet une réduction des coûts de forage allant jusqu’à 35%. Un autre aspect très important de cette thèse est la résolution du problème de recouvrement d’ensembles (SCP) à l’aide de métaheuristiques. Nous proposons une nouvelle formulation du SCP et un nouvel algorithme pour le résoudre. La nouvelle formulation élimine les problèmes de faisabilité et redondances du SCP. Nos expérimentations ont montré que l’algorithme proposé trouve des meilleurs résultats que la majorit (si pas tous) les algorithmes métaheuristiques existants pour le SCP.---------- ABSTRACT The first steps in the mining cycle are exploration and feasibility. In the exploration stage, geologists start by estimating the potential locations of mineral deposits. Then, they drill many long holes inside the mine to extract samples. The samples are then analyzed and a 3D model representing the distribution of mineralization in the mine is constructed. Because drilling is expensive, geologists and mining engineers try to position their drill holes to cover most potential sites with a minimum amount of drilling. However, the current techniques used to position the drill holes are inefficient and do not generally find the optimal solution. In this thesis, we use operations research techniques to solve the drill holes placement problem. We model the drill holes placement problem as a variant of the set covering problem (which is a very popular optimization problem) and solve the modelled problem using the combination of multiple metaheuristic algorithms, namely the genetic algorithm, iterated local search and tabu search. To evaluate the effectiveness of our approach, we compare the solutions found using our approach to the solutions found by industrial approaches on real world problems. The obtained results show that our approach allow saving up to 35% of drilling cost. Another primary aspect of the thesis is the resolution of the set covering problem (SCP) using metaheuristic approaches. We propose a new formulation of the SCP and a new metaheuristic algorithm to solve it. The new formulation is specially designed for metaheuristic approaches and allows solving the SCP without having to deal with feasibility and set redundancy. Computational results show that our metaheuristic approach is more effective than most (if not all) metaheuristic approaches for the SCP

    Applied (Meta)-Heuristic in Intelligent Systems

    Get PDF
    Engineering and business problems are becoming increasingly difficult to solve due to the new economics triggered by big data, artificial intelligence, and the internet of things. Exact algorithms and heuristics are insufficient for solving such large and unstructured problems; instead, metaheuristic algorithms have emerged as the prevailing methods. A generic metaheuristic framework guides the course of search trajectories beyond local optimality, thus overcoming the limitations of traditional computation methods. The application of modern metaheuristics ranges from unmanned aerial and ground surface vehicles, unmanned factories, resource-constrained production, and humanoids to green logistics, renewable energy, circular economy, agricultural technology, environmental protection, finance technology, and the entertainment industry. This Special Issue presents high-quality papers proposing modern metaheuristics in intelligent systems
    corecore