279 research outputs found

    ElectroCutscenes: Realistic Haptic Feedback in Cutscenes of Virtual Reality Games Using Electric Muscle Stimulation

    Get PDF
    Cutscenes in Virtual Reality (VR) games enhance story telling by delivering output in the form of visual, auditory, or haptic feedback (e.g., using vibrating handheld controllers). Since they lack interaction in the form of user input, cutscenes would significantly benefit from improved feedback. We introduce the concept and implementation of ElectroCutscenes, a concept in which Electric Muscle Stimulation (EMS) is leveraged to elicit physical user movements to correspond to those of personal avatars in cutscenes of VR games while the user stays passive. Through a user study (N=22) in which users passively received kinesthetic feedback resulting in involuntarily movements, we show that ElectroCutscenes significantly increases perceived presence and realism compared to controller-based vibrotactile and no haptic feedback. Furthermore, we found preliminary evidence that combining visual and EMS feedback can evoke movements that are not actuated by either of them alone. We discuss how to enhance realism and presence of cutscenes in VR games even when EMS can partially rather than completely actuate the desired body movements

    Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario

    Get PDF
    Virtual Reality (VR) environments can be applied to assistive robotics to improve the effectiveness and the user experience perception in the rehabilitation process due to its innovative nature, getting to entertain patients while they recover their motor functions. This literature review pretends to analyze some design principles of VR environments developed for upper limb rehabilitation processes. The idea is to identify features related to peripheral and central nervous systems, types of information included as feedback to increase the user's levels of immersion having a positive impact on the user's performance and experience during the treatment. A total of 32 articles published in Scopus, IEEE, PubMed, and Web of Science in the last four years were reviewed. We present the article selection process, the division by concepts presented previously, and the guidelines that can be considered for the design of VR environments applicable to assistive robots for upper limbs rehabilitation processes.Los entornos de Realidad Virtual (RV) aplicables a sistemas de robótica asistencial pueden ser diseñados de manera que mejoren la efectividad y la experiencia de usuario de los procesos de rehabilitación debido a su naturaleza novedosa, logrando entretener a los pacientes mientras recuperan sus funciones motoras. Esta revisión literaria pretende analizar los criterios de diseño de entornos de RV utilizados en procesos de rehabilitación de miembro superior, identificando las características de entornos para rehabilitación de problemas asociados el sistema nervioso central y periféricos, los tipos de información que se realimenta al usuario para beneficiar los niveles de inmersión y su impacto en términos del desempeño y la experiencia del usuario en tratamiento. Un total de 32 artículos publicados en revistas indexadas de Scopus, IEEE, PubMed y Web of Science en los últimos cuatro años fueron revisados. Se presenta el proceso de selección de artículos, la división por las temáticas presentadas anteriormente y los lineamientos generales que pueden ser considerados para el diseño de entornos de RV aplicables a robots asistenciales en procesos de rehabilitación de miembro superior

    Assessing the Potential Utility of a Virtual and Mixed/Augmented Reality System to Assist in Stroke Rehabilitation

    Get PDF
    Stroke is the number one cause of disability in the United States. This thesis summarizes current techniques and technologies for stroke rehabilitation and in addition, describes a revolutionary new concept and rehabilitation system, Visually Directed Intention (VDI), created by Dr. Jill Bolte Taylor (Indiana University). The purpose of this research is to determine the feasibility and potential of her system through comparative research and expert opinion. Dr. Taylor‟s rehabilitation system harnesses several technologies such as mixed reality, biofeedback, and game-like environments. Key concepts such as visualization, intention, motivation and repetition are also pivotal to her ideology. Specifically the system uses biofeedback, viewed through a mixed reality headset to motivate a user to utilize nerves and muscles he/she may have lost through experiencing a stroke. In order to properly identify and analyze current methods used in stroke rehabilitation, several subject matter experts (SME) at the University of Chicago‟s Rehabilitation Institute of Chicago (RIC) were interviewed. The SME provided useful critique on current stroke rehabilitation techniques, technologies and Dr. Taylor‟s innovative concept. Through a general qualitative interview, examining the SMEs research and actually experimenting with some of their technologies, meaningful insight into expert opinions on stroke rehabilitation technologies was obtained. After several detailed interviews at the RIC, the experts agreed that VDI is noble concept and has great potential. Although they had some specific comments about how to properly utilize the technologies involved, overall they believe the system encompasses Assessing the Potential Utility for a Mixed Reality System (vii) several exciting and motivating features that will significantly improve the rehabilitation process

    Ubiquitous haptic feedback in human-computer interaction through electrical muscle stimulation

    Get PDF
    [no abstract

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Automatic Posture Correction Utilizing Electrical Muscle Stimulation

    Get PDF
    Habitually poor posture can lead to repetitive strain injuries that lower an individual\u27s quality of life and productivity. Slouching over computer screens and smart phones, asymmetric weight distribution due to uneven leg loading, and improper loading posture are some of the common examples that lead to postural problems and health ramifications. To help cultivate good postural habits, researchers have proposed slouching, balance, and improper loading posture detection systems that alert users through traditional visual, auditory or vibro-tactile feedbacks when posture requires attention. However, such notifications are disruptive and can be easily ignored. We address these issues with a new physiological feedback system that uses sensors to detect these poor postures, and electrical muscle stimulation to automatically correct the poor posture. We compare our automatic approach against other alternative feedback systems and through different unique contexts. We find that our approach outperformed alternative traditional feedback systems by being faster and more accurate while delivering an equally comfortable user experience

    Advancing Medical Technology for Motor Impairment Rehabilitation: Tools, Protocols, and Devices

    Get PDF
    Excellent motor control skills are necessary to live a high-quality life. Activities such as walking, getting dressed, and feeding yourself may seem mundane, but injuries to the neuromuscular system can render these tasks difficult or even impossible to accomplish without assistance. Statistics indicate that well over 100 million people are affected by diseases or injuries, such as stroke, Parkinson’s Disease, Multiple Sclerosis, Cerebral Palsy, peripheral nerve injury, spinal cord injury, and amputation, that negatively impact their motor abilities. This wide array of injuries presents a challenge to the medical field as optimal treatment paradigms are often difficult to implement due to a lack of availability of appropriate assessment tools, the inability for people to access the appropriate medical centers for treatment, or altogether gaps in technology for treating the underlying impairments causing the disability. Addressing each of these challenges will improve the treatment of movement impairments, provide more customized and continuous treatment to a larger number of patients, and advance rehabilitative and assistive device technology. In my research, the key approach was to develop tools to assess and treat upper extremity movement impairment. In Chapter 2.1, I challenged a common biomechanical[GV1] modeling technique of the forearm. Comparing joint torque values through inverse dynamics simulation between two modeling platforms, I discovered that representing the forearm as a single cylindrical body was unable to capture the inertial parameters of a physiological forearm which is made up of two segments, the radius and ulna. I split the forearm segment into a proximal and distal segment, with the rationale being that the inertial parameters of the proximal segment could be tuned to those of the ulna and the inertial parameters of the distal segment could be tuned to those of the radius. Results showed a marked increase in joint torque calculation accuracy for those degrees of freedom that are affected by the inertial parameters of the radius and ulna. In Chapter 2.2, an inverse kinematic upper extremity model was developed for joint angle calculations from experimental motion capture data, with the rationale being that this would create an easy-to-use tool for clinicians and researchers to process their data. The results show accurate angle calculations when compared to algebraic solutions. Together, these chapters provide easy-to-use models and tools for processing movement assessment data. In Chapter 3.1, I developed a protocol to collect high-quality movement data in a virtual reality task that is used to assess hand function as part of a Box and Block Test. The goal of this chapter is to suggest a method to not only collect quality data in a research setting but can also be adapted for telehealth and at home movement assessment and rehabilitation. Results indicate that the data collected in this protocol are good and the virtual nature of this approach can make it a useful tool for continuous, data driven care in clinic or at home. In Chapter 3.2 I developed a high-density electromyography device for collecting motor unit action potentials of the arm. Traditional surface electromyography is limited by its ability to obtain signals from deep muscles and can also be time consuming to selectively place over appropriate muscles. With this high-density approach, muscle coverage is increased, placement time is decreased, and deep muscle activity can potentially be collected due to the high-density nature of the device[GV2] . Furthermore, the high-density electromyography device is built as a precursor to a high-density electromyography-electrical stimulation device for functional electrical stimulation. The customizable nature of the prototype in Chapter 3.2 allows for the implementation both recording and stimulating electrodes. Furthermore, signal results show that the electromyography data obtained from the device are of high quality and are correlated with gold standard surface electromyography sensors. One key factor in a device that can record and then stimulate based on the information from the recorded signals is an accurate movement intent decoder. High-quality movement decoders have been designed by closed-loop device controllers in the past, but they still struggle when the user interacts with objects of varying weight due to underlying alterations in muscle signals. In Chapter 4, I investigate this phenomenon by administering an experiment where participants perform a Box and Block Task with objects of 3 different weights, 0 kg, 0.02 kg, and 0.1 kg. Electromyography signals of the participants right arm were collected and co-contraction levels between antagonistic muscles were analyzed to uncover alterations in muscle forces and joint dynamics. Results indicated contraction differences between the conditions and also between movement stages (contraction levels before grabbing the block vs after touching the block) for each condition. This work builds a foundation for incorporating object weight estimates into closed-loop electromyography device movement decoders. Overall, we believe the chapters in this thesis provide a basis for increasing availability to movement assessment tools, increasing access to effective movement assessment and rehabilitation, and advance the medical device and technology field

    Flexible Virtual Reality System for Neurorehabilitation and Quality of Life Improvement

    Full text link
    As life expectancy is mostly increasing, the incidence of many neurological disorders is also constantly growing. For improving the physical functions affected by a neurological disorder, rehabilitation procedures are mandatory, and they must be performed regularly. Unfortunately, neurorehabilitation procedures have disadvantages in terms of costs, accessibility and a lack of therapists. This paper presents Immersive Neurorehabilitation Exercises Using Virtual Reality (INREX-VR), our innovative immersive neurorehabilitation system using virtual reality. The system is based on a thorough research methodology and is able to capture real-time user movements and evaluate joint mobility for both upper and lower limbs, record training sessions and save electromyography data. The use of the first-person perspective increases immersion, and the joint range of motion is calculated with the help of both the HTC Vive system and inverse kinematics principles applied on skeleton rigs. Tutorial exercises are demonstrated by a virtual therapist, as they were recorded with real-life physicians, and sessions can be monitored and configured through tele-medicine. Complex movements are practiced in gamified settings, encouraging self-improvement and competition. Finally, we proposed a training plan and preliminary tests which show promising results in terms of accuracy and user feedback. As future developments, we plan to improve the system's accuracy and investigate a wireless alternative based on neural networks.Comment: 47 pages, 20 figures, 17 tables (including annexes), part of the MDPI Sesnsors "Special Issue Smart Sensors and Measurements Methods for Quality of Life and Ambient Assisted Living

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device
    corecore