417 research outputs found

    An Investigation of Indoor Positioning Systems and their Applications

    Get PDF
    PhDActivities of Daily Living (ADL) are important indicators of both cognitive and physical well-being in healthy and ill humans. There is a range of methods to recognise ADLs, each with its own limitations. The focus of this research was on sensing location-driven activities, in which ADLs are derived from location sensed using Radio Frequency (RF, e.g., WiFi or BLE), Magnetic Field (MF) and light (e.g., Lidar) measurements in three different environments. This research discovered that different environments can have different constraints and requirements. It investigated how to improve the positioning accuracy and hence how to improve the ADL recognition accuracy. There are several challenges that need to be addressed in order to do this. First, RF location fingerprinting is affected by the heterogeneity smartphones and their orientation with respect to transmitters, increasing the location determination error. To solve this, a novel Received Signal Strength Indication (RSSI) ranking based location fingerprinting methods that use Kendall Tau Correlation Coefficient (KTCC) and Convolutional Neural Networks (CNN) are proposed to correlate a signal position to pre-defined Reference Points (RPs) or fingerprints, more accurately, The accuracy has increased by up to 25.8% when compared to using Euclidean Distance (ED) based Weighted K-Nearest Neighbours Algorithm (WKNN). Second, the use of MF measurements as fingerprints can overcome some additional RF fingerprinting challenges, as MF measurements are far more invariant to static and dynamic physical objects that affect RF transmissions. Hence, a novel fast path matching data algorithm for an MF sensor combined with an Inertial Measurement Unit (IMU) to determine direction was researched and developed. It can achieve an average of 1.72 m positioning accuracy when the user walks far fewer (5) steps. Third, a device-free or off-body novel location-driven ADL method based upon 2D Lidar was investigated. An innovative method for recognising daily activities using a Seq2Seq model to analyse location data from a low-cost rotating 2D Lidar is proposed. It provides an accuracy of 88% when recognising 17 targeted ADLs. These proposed methods in this thesis have been validated in real environments.Chinese Scholarship Counci

    Device-Free, Activity during Daily Life, Recognition Using a Low-Cost Lidar

    Get PDF
    Device-free or off-body sensing methods, such as Lidar, can be used for location-driven Activities during Daily Life (ADL) recognition without the need for a mobile host such as a human or robot to use on-body location sensors. Because if such an attachment fails, or is not operational (powered up), when such mobile hosts are device free, it still works. Hence, this paper proposes an innovative method for recognizing ADLs using a state-of-art seq2seq Recurrent Neural Network (RNN) model to classify centimeter level accurate location data from a low-cost, 360°rotating 2D Lidar device. We researched, developed, deployed and validated the system. The results indicate that it can provide a centimeter-level localization accuracy of 88% when recognizing 17 targeted location-related daily activities

    Real-time localization using received signal strength

    Get PDF
    Locating and tracking assets in an indoor environment is a fundamental requirement for several applications which include for instance network enabled manufacturing. However, translating time of flight-based GPS technique for indoor solutions has proven very costly and inaccurate primarily due to the need for high resolution clocks and the non-availability of reliable line of sight condition between the transmitter and receiver. In this dissertation, localization and tracking of wireless devices using radio signal strength (RSS) measurements in an indoor environment is undertaken. This dissertation is presented in the form of five papers. The first two papers deal with localization and placement of receivers using a range-based method where the Friis transmission equation is used to relate the variation of the power with radial distance separation between the transmitter and receiver. The third paper introduces the cross correlation based localization methodology. Additionally, this paper also presents localization of passive RFID tags operating at 13.56MHz frequency or less by measuring the cross-correlation in multipath noise from the backscattered signals. The fourth paper extends the cross-correlation based localization algorithm to wireless devices operating at 2.4GHz by exploiting shadow fading cross-correlation. The final paper explores the placement of receivers in the target environment to ensure certain level of localization accuracy under cross-correlation based method. The effectiveness of our localization methodology is demonstrated experimentally by using IEEE 802.15.4 radios operating in fading noise rich environment such as an indoor mall and in a laboratory facility of Missouri University of Science and Technology. Analytical performance guarantees are also included for these methods in the dissertation --Abstract, page iv

    Space-partitioning with cascade-connected ANN structures for positioning in mobile communication systems

    Get PDF
    The world around us is getting more connected with each day passing by – new portable devices employing wireless connections to various networks wherever one might be. Locationaware computing has become an important bit of telecommunication services and industry. For this reason, the research efforts on new and improved localisation algorithms are constantly being performed. Thus far, the satellite positioning systems have achieved highest popularity and penetration regarding the global position estimation. In spite the numerous investigations aimed at enabling these systems to equally procure the position in both indoor and outdoor environments, this is still a task to be completed. This research work presented herein aimed at improving the state-of-the-art positioning techniques through the use of two highly popular mobile communication systems: WLAN and public land mobile networks. These systems already have widely deployed network structures (coverage) and a vast number of (inexpensive) mobile clients, so using them for additional, positioning purposes is rational and logical. First, the positioning in WLAN systems was analysed and elaborated. The indoor test-bed, used for verifying the models’ performances, covered almost 10,000m2 area. It has been chosen carefully so that the positioning could be thoroughly explored. The measurement campaigns performed therein covered the whole of test-bed environment and gave insight into location dependent parameters available in WLAN networks. Further analysis of the data lead to developing of positioning models based on ANNs. The best single ANN model obtained 9.26m average distance error and 7.75m median distance error. The novel positioning model structure, consisting of cascade-connected ANNs, improved those results to 8.14m and 4.57m, respectively. To adequately compare the proposed techniques with other, well-known research techniques, the environment positioning error parameter was introduced. This parameter enables to take the size of the test environment into account when comparing the accuracy of the indoor positioning techniques. Concerning the PLMN positioning, in-depth analysis of available system parameters and signalling protocols produced a positioning algorithm, capable of fusing the system received signal strength parameters received from multiple systems and multiple operators. Knowing that most of the areas are covered by signals from more than one network operator and even more than one system from one operator, it becomes easy to note the great practical value of this novel algorithm. On the other hand, an extensive drive-test measurement campaign, covering more than 600km in the central areas of Belgrade, was performed. Using this algorithm and applying the single ANN models to the recorded measurements, a 59m average distance error and 50m median distance error were obtained. Moreover, the positioning in indoor environment was verified and the degradation of performances, due to the crossenvironment model use, was reported: 105m average distance error and 101m median distance error. When applying the new, cascade-connected ANN structure model, distance errors were reduced to 26m and 2m, for the average and median distance errors, respectively. The obtained positioning accuracy was shown to be good enough for the implementation of a broad scope of location based services by using the existing and deployed, commonly available, infrastructure

    Location based services in wireless ad hoc networks

    Get PDF
    In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects - i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors\u27 locations post deployment, pre-fixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure end-to-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks --Abstract, page iii

    Comparison of vertical handover decision-based techniques in heterogeneous networks

    Get PDF
    Industry leaders are currently setting out standards for 5G Networks projected for 2020 or even sooner. Future generation networks will be heterogeneous in nature because no single network type is capable of optimally meeting all the rapid changes in customer demands. Heterogeneous networks are typically characterized by some network architecture, base stations of varying transmission power, transmission solutions and the deployment of a mix of technologies (multiple radio access technologies). In heterogeneous networks, the processes involved when a mobile node successfully switches from one radio access technology to the other for the purpose of quality of service continuity is termed vertical handover or vertical handoff. Active calls that get dropped, or cases where there is discontinuity of service experienced by mobile users can be attributed to the phenomenon of delayed handover or an outright case of an unsuccessful handover procedure. This dissertation analyses the performance of a fuzzy-based VHO algorithm scheme in a Wi-Fi, WiMAX, UMTS and LTE integrated network using the OMNeT++ discrete event simulator. The loose coupling type network architecture is adopted and results of the simulation are analysed and compared for the two major categories of handover basis; multiple and single criteria based handover methods. The key performance indices from the simulations showed better overall throughput, better call dropped rate and shorter handover time duration for the multiple criteria based decision method compared to the single criteria based technique. This work also touches on current trends, challenges in area of seamless handover and initiatives for future Networks (Next Generation Heterogeneous Networks)

    A WiFi RSSI Ranking Fingerprint Positioning System and Its Application to Indoor Activities of Daily Living Recognition

    Get PDF
    WiFi RSSI (Received Signal Strength Indicators) seem to be the basis of the most widely used method for Indoor Positioning Systems (IPS) driven by the growth of deployed WiFi Access Points (AP), especially within urban areas. However, there are still several challenges to be tackled: its accuracy is often 2-3m, it’s prone to interference and attenuation effects, and the diversity of Radio Frequency (RF) receivers, e.g., smartphones, affects its accuracy. RSSI fingerprinting can be used to mitigate against interference and attenuation effects. In this paper, we present a novel, more accurate, RSSI ranking-based method that consists of three parts. First, an AP selection based on a Genetic Algorithm (GA) is applied to reduce the positioning computational cost and increase the positioning accuracy. Second, Kendall Tau Correlation Coefficient (KTCC) and a Convolutional Neural Network (CNN) are applied to extract the ranking features for estimating locations. Third, an Extended Kalman filter (EKF) is then used to smooth the estimated sequential locations before Multi-Dimensional Dynamic Time Warping (MD-DTW) is used to match similar trajectories or paths representing ADLs from different or the same users that vary in time and space In order to leverage and evaluate our IPS system, we also used it to recognise Activities of Daily Living (ADL) in an office like environment. It was able to achieve an average positioning accuracy of 1.42m and a 79.5% recognition accuracy for 9 location-driven activities

    A Method for Dynamically Selecting the Best Frequency Hopping Technique in Industrial Wireless Sensor Network Applications

    Get PDF
    Industrial wireless applications often share the communication channel with other wireless technologies and communication protocols. This coexistence produces interferences and transmission errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of data packets and the measures to handle them produce an undesirable drop in the QoS and hinder the overall robustness and energy efficiency of the network. Interference avoidance mechanisms, such as frequency hopping techniques, reduce the need for retransmissions due to interferences but they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other hand, the total absence of interference avoidance mechanisms introduces a security risk because the communication channel may be intentionally attacked and interfered with to hinder or totally block it. In this paper we propose a method for supporting the design of communication solutions under dynamic channel interference conditions and we implement dynamic management policies for frequency hopping technique and channel selection at runtime. The method considers several standard frequency hopping techniques and quality metrics, and the quality and status of the available frequency channels to propose the best combined solution to minimize the side effects of interferences. A simulation tool has been developed and used in this work to validate the method.Research partially supported by the European Union's Seventh Framework Programme for research, technological development and demonstration under Grant Agreement Number FP7-SEC-2013-1/607292 ZONeSEC-Towards a EU framework for the security of Widezones, in the scope of the activities related to develop technologies that foster the Plug, Play&Forget paradigm. Also partially supported by the Department of Education, Universities and Research of the Basque Government under Grant IT980-16 and the Spanish Research Council, under grant TIN2016-79897-P

    Applications of Internet of Things

    Get PDF
    This book introduces the Special Issue entitled “Applications of Internet of Things”, of ISPRS International Journal of Geo-Information. Topics covered in this issue include three main parts: (I) intelligent transportation systems (ITSs), (II) location-based services (LBSs), and (III) sensing techniques and applications. Three papers on ITSs are as follows: (1) “Vehicle positioning and speed estimation based on cellular network signals for urban roads,” by Lai and Kuo; (2) “A method for traffic congestion clustering judgment based on grey relational analysis,” by Zhang et al.; and (3) “Smartphone-based pedestrian’s avoidance behavior recognition towards opportunistic road anomaly detection,” by Ishikawa and Fujinami. Three papers on LBSs are as follows: (1) “A high-efficiency method of mobile positioning based on commercial vehicle operation data,” by Chen et al.; (2) “Efficient location privacy-preserving k-anonymity method based on the credible chain,” by Wang et al.; and (3) “Proximity-based asynchronous messaging platform for location-based Internet of things service,” by Gon Jo et al. Two papers on sensing techniques and applications are as follows: (1) “Detection of electronic anklet wearers’ groupings throughout telematics monitoring,” by Machado et al.; and (2) “Camera coverage estimation based on multistage grid subdivision,” by Wang et al
    • …
    corecore