2,474 research outputs found

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Efficient Execution of Sequential Instructions Streams by Physical Machines

    Get PDF
    Any computational model which relies on a physical system is likely to be subject to the fact that information density and speed have intrinsic, ultimate limits. The RAM model, and in particular the underlying assumption that memory accesses can be carried out in time independent from memory size itself, is not physically implementable. This work has developed in the field of limiting technology machines, in which it is somewhat provocatively assumed that technology has achieved the physical limits. The ultimate goal for this is to tackle the problem of the intrinsic latencies of physical systems by encouraging scalable organizations for processors and memories. An algorithmic study is presented, which depicts the implementation of high concurrency programs for SP and SPE, sequential machine models able to compute direct-flow programs in optimal time. Then, a novel pieplined, hierarchical memory organization is presented, with optimal latency and bandwidth for a physical system. In order to both take full advantage of the memory capabilities and exploit the available instruction level parallelism of the code to be executed, a novel processor model is developed. Particular care is put in devising an efficient information flow within the processor itself. Both designs are extremely scalable, as they are based on fixed capacity and fixed size nodes, which are connected as a multidimensional array. Performance analysis on the resulting machine design has led to the discovery that latencies internal to the processor can be the dominating source of complexity in instruction flow execution, which adds to the effects of processor-memory interaction. A characterization of instruction flows is then developed, which is based on the topology induced by instruction dependences

    Efficient design space exploration of embedded microprocessors

    Get PDF

    Automatic Performance Optimization of Stencil Codes

    Get PDF
    A widely used class of codes are stencil codes. Their general structure is very simple: data points in a large grid are repeatedly recomputed from neighboring values. This predefined neighborhood is the so-called stencil. Despite their very simple structure, stencil codes are hard to optimize since only few computations are performed while a comparatively large number of values have to be accessed, i.e., stencil codes usually have a very low computational intensity. Moreover, the set of optimizations and their parameters also depend on the hardware on which the code is executed. To cut a long story short, current production compilers are not able to fully optimize this class of codes and optimizing each application by hand is not practical. As a remedy, we propose a set of optimizations and describe how they can be applied automatically by a code generator for the domain of stencil codes. A combination of a space and time tiling is able to increase the data locality, which significantly reduces the memory-bandwidth requirements: a standard three-dimensional 7-point Jacobi stencil can be accelerated by a factor of 3. This optimization can target basically any stencil code, while others are more specialized. E.g., support for arbitrary linear data layout transformations is especially beneficial for colored kernels, such as a Red-Black Gauss-Seidel smoother. On the one hand, an optimized data layout for such kernels reduces the bandwidth requirements while, on the other hand, it simplifies an explicit vectorization. Other noticeable optimizations described in detail are redundancy elimination techniques to eliminate common subexpressions both in a sequence of statements and across loop boundaries, arithmetic simplifications and normalizations, and the vectorization mentioned previously. In combination, these optimizations are able to increase the performance not only of the model problem given by Poisson’s equation, but also of real-world applications: an optical flow simulation and the simulation of a non-isothermal and non-Newtonian fluid flow

    Radio emission from cosmic ray air showers: Monte Carlo simulations

    Get PDF
    We present time-domain Monte Carlo simulations of radio emission from cosmic ray air showers in the scheme of coherent geosynchrotron radiation. Our model takes into account the important air shower characteristics such as the lateral and longitudinal particle distributions, the particle track length and energy distributions, a realistic magnetic field geometry and the shower evolution as a whole. The Monte Carlo approach allows us to retain the full polarisation information and to carry out the calculations without the need for any far-field approximations. We demonstrate the strategies developed to tackle the computational effort associated with the simulation of a huge number of particles for a great number of observer bins and illustrate the robustness and accuracy of these techniques. We predict the emission pattern, the radial and the spectral dependence of the radiation from a prototypical 10^17 eV vertical air shower and find good agreement with our analytical results (Huege & Falcke 2003) and the available historical data. Track-length effects in combination with magnetic field effects surprisingly wash out any significant asymmetry in the total field strength emission pattern in spite of the magnetic field geometry. While statistics of total field strengths alone can therefore not prove the geomagnetic origin, the predicted high degree of polarisation in the direction perpendicular to the shower and magnetic field axes allows a direct test of the geomagnetic emission mechanism with polarisation-sensitive experiments such as LOPES. Our code provides a robust, yet flexible basis for detailed studies of the dependence of the radio emission on specific shower parameters and for the inclusion of additional radiation mechanism in the future.Comment: 21 pages, version accepted for publication by Astronomy & Astrophysic

    The Sunyaev Zel'dovich effect: simulation and observation

    Get PDF
    The Sunyaev Zel'dovich effect (SZ effect) is a complete probe of ionized baryons, the majority of which are likely hiding in the intergalactic medium. We ran a 5123512^3 Λ\LambdaCDM simulation using a moving mesh hydro code to compute the statistics of the thermal and kinetic SZ effect such as the power spectra and measures of non-Gaussianity. The thermal SZ power spectrum has a very broad peak at multipole l∌2000−104l\sim 2000-10^4 with temperature fluctuations ΔT∌15ÎŒ\Delta T \sim 15\muK. The power spectrum is consistent with available observations and suggests a high σ8≃1.0\sigma_8\simeq 1.0 and a possible role of non-gravitational heating. The non-Gaussianity is significant and increases the cosmic variance of the power spectrum by a factor of ∌5\sim 5 for l<6000l<6000. We explore optimal driftscan survey strategies for the AMIBA CMB interferometer and their dependence on cosmology. For SZ power spectrum estimation, we find that the optimal sky coverage for a 1000 hours of integration time is several hundred square degrees. One achieves an accuracy better than 40% in the SZ measurement of power spectrum and an accuracy better than 20% in the cross correlation with Sloan galaxies for 2000<l<50002000<l<5000. For cluster searches, the optimal scan rate is around 280 hours per square degree with a cluster detection rate 1 every 7 hours, allowing for a false positive rate of 20% and better than 30% accuracy in the cluster SZ distribution function measurement.Comment: 34 pages, 20 figures. Submitted to ApJ. Simulation maps have been replaced by high resolution images. For higher resolution color images, please download from http://www.cita.utoronto.ca/~zhangpj/research/SZ/ We corrected a bug in our analysis. the SZ power spectrum decreases 50% and y parameter decrease 25

    Diffusive hidden Markov model characterization of DNA looping dynamics in tethered particle experiments

    Get PDF
    In many biochemical processes, proteins bound to DNA at distant sites are brought into close proximity by loops in the underlying DNA. For example, the function of some gene-regulatory proteins depends on such DNA looping interactions. We present a new technique for characterizing the kinetics of loop formation in vitro, as observed using the tethered particle method, and apply it to experimental data on looping induced by lambda repressor. Our method uses a modified (diffusive) hidden Markov analysis that directly incorporates the Brownian motion of the observed tethered bead. We compare looping lifetimes found with our method (which we find are consistent over a range of sampling frequencies) to those obtained via the traditional threshold-crossing analysis (which can vary depending on how the raw data are filtered in the time domain). Our method does not involve any time filtering and can detect sudden changes in looping behavior. For example, we show how our method can identify transitions between long-lived, kinetically distinct states that would otherwise be difficult to discern

    Unified Polyhedral Modeling of Temporal and Spatial Locality

    Get PDF
    Despite decades of work in this area, the construction of effective loop nest optimizers and parallelizers continues to be challenging due to the increasing diversity of both loop-intensive application workloads and complex memory/computation hierarchies in modern processors. The lack of a systematic approach to optimizing locality and parallelism, with a well-founded data locality model, is a major obstacle to the design of optimizing compilers coping with the variety of software and hardware. Acknowledging the conflicting demands on loop nest optimization, we propose a new unified algorithm for optimizing parallelism and locality in loop nests, that is capable of modeling temporal and spatial effects of multiprocessors and accelerators with deep memory hierarchies and multiple levels of parallelism. It orchestrates a collection of parameterizable optimization problems for locality and parallelism objectives over a polyhedral space of semantics-preserving transformations. The overall problem is not convex and is only constrained by semantics preservation. We discuss the rationale for this unified algorithm, and validate it on a collection of representative computational kernels/benchmarks.MalgrĂ© les dĂ©cennies de travail dans ce domaine, la construction de compilateurs capables de paralĂ©liser et optimiser les nids de boucle reste un problĂšme difficile, dans le contexte d’une augmentation de la diversitĂ© des applications calculatoires et de la complexitĂ© de la hiĂ©rarchie de calcul et de stockage des processeurs modernes. L’absence d’une mĂ©thode systĂ©matique pour optimiser la localitĂ© et le parallĂ©lisme, fondĂ©e sur un modĂšle de localitĂ© des donnĂ©es pertinent, constitue un obstacle majeur pour prendre en charge la variĂ©tĂ© des besoins en optimisation de boucles issus du logiciel et du matĂ©riel. Dans ce contexte, nous proposons un nouvel algorithme unifiĂ© pour l’optimisation du parallĂ©lisme et de la localitĂ© dans les nids de boucles, capable de modĂ©liser les effets temporels et spatiaux des multiprocesseurs et accĂ©lĂ©rateurs comportant des hiĂ©rarchies profondes de parallĂ©lisme et de mĂ©moire. Cet algorithme coordonne la rĂ©solution d’une collection de problĂšmes d’optimisation paramĂštrĂ©s, portant sur des objectifs de localitĂ© ou et de parallĂ©lisme, dans un espace polyĂ©drique de transformations prĂ©servant la sĂ©mantique du programme. La conception de cet algorithme fait l’objet d’une discussion systĂ©matique, ainsi que d’une validation expĂ©rimentale sur des noyaux calculatoires et benchmarks reprĂ©sentatifs

    Autotuning for Automatic Parallelization on Heterogeneous Systems

    Get PDF
    • 

    corecore