183 research outputs found

    Advanced Television and Signal Processing Program

    Get PDF
    Contains an introduction and reports on two research projects.Advanced Television Research Progra

    Advanced Television and Signal Processing Program

    Get PDF
    Contains an introduction and reports on fifteen research projects.Advanced Television Research ProgramAdams-Russell Electronics, Inc.National Science Foundation Fellowship Grant MIP 87-14969National Science Foundation FellowshipU.S. Navy - Office of Naval Research Grant N00014-89-J-1489U.S. Air Force - Electronic Systems Division Contract F1 9628-89-K-004

    Investigation of coding and equalization for the digital HDTV terrestrial broadcast channel

    Get PDF
    Includes bibliographical references (p. 241-248).Supported by the Advanced Telecommunications Research Program.Julien J. Nicolas

    Micropipeline controller design and verification with applications in signal processing

    Get PDF

    Signal processing for high-definition television

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1995.Includes bibliographical references (p. 60-62).by Peter Monta.Ph.D

    Recursive algorithm, architectures and FPGA implementation of the two-dimensional discrete cosine transform

    Get PDF
    In this paper, a new recursive algorithm and two types of circuit architectures are presented for the computation of the two dimensional discrete cosine transform (2-D DCT). The new algorithm permits to compute the 2-D DCT by a simple procedure of the 1-D recursive calculations involving only cosine coefficients. The recursive kernel for the proposed algorithm contains a small number of operations. Also, it requires a smaller number of pre-computed data compared to many of existing algorithms in the same category. The kernel can be easily implemented in a simple circuit block with a short critical delay path. In order to evaluate the performance improvement resulting from the new algorithm, an architecture for the 2-D DCT designed by direct mapping from the computation structure of the proposed algorithm has been implemented in a FPGA board. The results show that the reduction of the hardware consumption can easily reach 25% and the clock frequency can increase 17% compared to a system implementing a recently reported 2-D DCT recursive algorithm. For a further reduction of the hardware, another architecture has been proposed for the same 2-D DCT computation. Using one recursive computation block to perform different functions, this architecture needs only approximately one half of the hardware that is required in the first architecture, which has been confirmed by a FPGA implementation

    A MPEG Decoder in SHIM

    Get PDF
    The emergence of world-wide standards for video compression has created a demand for design tools and simulation resources to support algorithm research and new product development. Because of the need for subjective study in the design of video compression algorithms it is essential that flexible yet computationally efficient tools be developed. For this project, we plan to implement a MPEG standard using the SHIM programming language. The SHIM is a software/hardware integration language whose aim is to provide communication between hardware and software while providing deterministic concurrency. The focus of this project will be to emphasize the efficiency of the SHIM language in embedded applications as compared to other existing implementations

    Three Dimensional Bistatic Tomography Using HDTV

    Get PDF
    The thesis begins with a review of the principles of diffraction and reflection tomography; starting with the analytic solution to the inhomogeneous Helmholtz equation, after linearization by the Born approximation (the weak scatterer solution), and arriving at the Filtered Back Projection (Propagation) method of reconstruction. This is followed by a heuristic derivation more directly couched in the radar imaging context, without the rigor of the general inverse problem solution and more closely resembling an imaging turntable or inverse synthetic aperture radar. The heuristic derivation leads into the concept of the line integral and projections (the Radon Transform), followed by more general geometries where the plane wave approximation is invalid. We proceed next to study of the dependency of reconstruction on the space-frequency trajectory, combining the spatial aperture and waveform. Two and three dimensional apertures, monostatic and bistatic, fully and sparsely sampled and including partial apertures, with controlled waveforms (CW and pulsed, with and without modulation) define the filling of k-space and concomitant reconstruction performance. Theoretical developments in the first half of the thesis are applied to the specific example of bistatic tomographic imaging using High Definition Television (HDTV); the United States version of DVB-T. Modeling of the HDTV waveform using pseudonoise modulation to represent the hybrid 8VSB HDTV scheme and the move-stop-move approximation established the imaging potential, employing an idealized, isotropic 18 scatterer. As the move-stop-move approximation places a limitation on integration time (in cross correlation/pulse compression) due to transmitter/receiver motion, an exact solution for compensation of Doppler distortion is derived. The concept is tested with the assembly and flight test of a bistatic radar system employing software-defined radios (SDR). A three dimensional, bistatic collection aperture, exploiting an elevated commercial HDTV transmitter, is focused to demonstrate the principle. This work, to the best of our knowledge, represents a first in the formation of three dimensional images using bistatically-exploited television transmitters

    Scalable coding of HDTV pictures using the MPEG coder

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaves 118-121).by Adnan Husain Lawai.M.S
    • …
    corecore