863 research outputs found

    An HMM--ELLAM scheme on generic polygonal meshes for miscible incompressible flows in porous media

    Full text link
    We design a numerical approximation of a system of partial differential equations modelling the miscible displacement of a fluid by another in a porous medium. The advective part of the system is discretised using a characteristic method, and the diffusive parts by a finite volume method. The scheme is applicable on generic (possibly non-conforming) meshes as encountered in applications. The main features of our work are the reconstruction of a Darcy velocity, from the discrete pressure fluxes, that enjoys a local consistency property, an analysis of implementation issues faced when tracking, via the characteristic method, distorted cells, and a new treatment of cells near the injection well that accounts better for the conservativity of the injected fluid

    Stable Crank-Nicolson Discretisation for Incompressible Miscible Displacement Problems of Low Regularity

    Get PDF
    In this article we study the numerical approximation of incompressible miscible displacement problems with a linearised Crank-Nicolson time discretisation, combined with a mixed finite element and discontinuous Galerkin method. At the heart of the analysis is the proof of convergence under low regularity requirements. Numerical experiments demonstrate that the proposed method exhibits second-order convergence for smooth and robustness for rough problems.Comment: Enumath 200

    Unified convergence analysis of numerical schemes for a miscible displacement problem

    Full text link
    This article performs a unified convergence analysis of a variety of numerical methods for a model of the miscible displacement of one incompressible fluid by another through a porous medium. The unified analysis is enabled through the framework of the gradient discretisation method for diffusion operators on generic grids. We use it to establish a novel convergence result in L(0,T;L2(Ω))L^\infty(0,T; L^2(\Omega)) of the approximate concentration using minimal regularity assumptions on the solution to the continuous problem. The convection term in the concentration equation is discretised using a centred scheme. We present a variety of numerical tests from the literature, as well as a novel analytical test case. The performance of two schemes are compared on these tests; both are poor in the case of variable viscosity, small diffusion and medium to small time steps. We show that upstreaming is not a good option to recover stable and accurate solutions, and we propose a correction to recover stable and accurate schemes for all time steps and all ranges of diffusion

    Central Schemes for Porous Media Flows

    Full text link
    We are concerned with central differencing schemes for solving scalar hyperbolic conservation laws arising in the simulation of multiphase flows in heterogeneous porous media. We compare the Kurganov-Tadmor, 2000 semi-discrete central scheme with the Nessyahu-Tadmor, 1990 central scheme. The KT scheme uses more precise information about the local speeds of propagation together with integration over nonuniform control volumes, which contain the Riemann fans. These methods can accurately resolve sharp fronts in the fluid saturations without introducing spurious oscillations or excessive numerical diffusion. We first discuss the coupling of these methods with velocity fields approximated by mixed finite elements. Then, numerical simulations are presented for two-phase, two-dimensional flow problems in multi-scale heterogeneous petroleum reservoirs. We find the KT scheme to be considerably less diffusive, particularly in the presence of high permeability flow channels, which lead to strong restrictions on the time step selection; however, the KT scheme may produce incorrect boundary behavior
    corecore