542 research outputs found

    Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates

    Full text link
    New efficient and accurate numerical methods are proposed to compute ground states and dynamics of dipolar Bose-Einstein condensates (BECs) described by a three-dimensional (3D) Gross-Pitaevskii equation (GPE) with a dipolar interaction potential. Due to the high singularity in the dipolar interaction potential, it brings significant difficulties in mathematical analysis and numerical simulations of dipolar BECs. In this paper, by decoupling the two-body dipolar interaction potential into short-range (or local) and long-range interactions (or repulsive and attractive interactions), the GPE for dipolar BECs is reformulated as a Gross-Pitaevskii-Poisson type system. Based on this new mathematical formulation, we prove rigorously existence and uniqueness as well as nonexistence of the ground states, and discuss the existence of global weak solution and finite time blowup of the dynamics in different parameter regimes of dipolar BECs. In addition, a backward Euler sine pseudospectral method is presented for computing the ground states and a time-splitting sine pseudospectral method is proposed for computing the dynamics of dipolar BECs. Due to the adaption of new mathematical formulation, our new numerical methods avoid evaluating integrals with high singularity and thus they are more efficient and accurate than those numerical methods currently used in the literatures for solving the problem. Extensive numerical examples in 3D are reported to demonstrate the efficiency and accuracy of our new numerical methods for computing the ground states and dynamics of dipolar BECs

    The multi-configurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems

    Full text link
    The evolution of Bose-Einstein condensates is amply described by the time-dependent Gross-Pitaevskii mean-field theory which assumes all bosons to reside in a single time-dependent one-particle state throughout the propagation process. In this work, we go beyond mean-field and develop an essentially-exact many-body theory for the propagation of the time-dependent Schr\"odinger equation of NN interacting identical bosons. In our theory, the time-dependent many-boson wavefunction is written as a sum of permanents assembled from orthogonal one-particle functions, or orbitals, where {\it both} the expansion coefficients {\it and} the permanents (orbitals) themselves are {\it time-dependent} and fully determined according to a standard time-dependent variational principle. By employing either the usual Lagrangian formulation or the Dirac-Frenkel variational principle we arrive at two sets of coupled equations-of-motion, one for the orbitals and one for the expansion coefficients. The first set comprises of first-order differential equations in time and non-linear integro-differential equations in position space, whereas the second set consists of first-order differential equations with time-dependent coefficients. We call our theory multi-configurational time-dependent Hartree for bosons, or MCTDHB(MM), where MM specifies the number of time-dependent orbitals used to construct the permanents. Numerical implementation of the theory is reported and illustrative numerical examples of many-body dynamics of trapped Bose-Einstein condensates are provided and discussed.Comment: 30 pages, 2 figure

    Computation of Ground States of the Gross-Pitaevskii Functional via Riemannian Optimization

    Full text link
    In this paper we combine concepts from Riemannian Optimization and the theory of Sobolev gradients to derive a new conjugate gradient method for direct minimization of the Gross-Pitaevskii energy functional with rotation. The conservation of the number of particles constrains the minimizers to lie on a manifold corresponding to the unit L2L^2 norm. The idea developed here is to transform the original constrained optimization problem to an unconstrained problem on this (spherical) Riemannian manifold, so that fast minimization algorithms can be applied as alternatives to more standard constrained formulations. First, we obtain Sobolev gradients using an equivalent definition of an H1H^1 inner product which takes into account rotation. Then, the Riemannian gradient (RG) steepest descent method is derived based on projected gradients and retraction of an intermediate solution back to the constraint manifold. Finally, we use the concept of the Riemannian vector transport to propose a Riemannian conjugate gradient (RCG) method for this problem. It is derived at the continuous level based on the "optimize-then-discretize" paradigm instead of the usual "discretize-then-optimize" approach, as this ensures robustness of the method when adaptive mesh refinement is performed in computations. We evaluate various design choices inherent in the formulation of the method and conclude with recommendations concerning selection of the best options. Numerical tests demonstrate that the proposed RCG method outperforms the simple gradient descent (RG) method in terms of rate of convergence. While on simple problems a Newton-type method implemented in the {\tt Ipopt} library exhibits a faster convergence than the (RCG) approach, the two methods perform similarly on more complex problems requiring the use of mesh adaptation. At the same time the (RCG) approach has far fewer tunable parameters.Comment: 28 pages, 13 figure

    Generalization of splitting methods based on modified potentials to nonlinear evolution equations of parabolic and Schr\"odinger type

    Full text link
    The present work is concerned with the extension of modified potential operator splitting methods to specific classes of nonlinear evolution equations. The considered partial differential equations of Schr{\"o}dinger and parabolic type comprise the Laplacian, a potential acting as multiplication operator, and a cubic nonlinearity. Moreover, an invariance principle is deduced that has a significant impact on the efficient realisation of the resulting modified operator splitting methods for the Schr{\"o}dinger case.} Numerical illustrations for the time-dependent Gross--Pitaevskii equation in the physically most relevant case of three space dimensions and for its parabolic counterpart related to ground state and excited state computations confirm the benefits of the proposed fourth-order modified operator splitting method in comparison with standard splitting methods. The presented results are novel and of particular interest from both, a theoretical perspective to inspire future investigations of modified operator splitting methods for other classes of nonlinear evolution equations and a practical perspective to advance the reliable and efficient simulation of Gross--Pitaevskii systems in real and imaginary time.Comment: 30 pages, 6 figure

    A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates

    Get PDF
    Numerical computations of stationary states of fast-rotating Bose-Einstein condensates require high spatial resolution due to the presence of a large number of quantized vortices. In this paper we propose a low-order finite element method with mesh adaptivity by metric control, as an alternative approach to the commonly used high order (finite difference or spectral) approximation methods. The mesh adaptivity is used with two different numerical algorithms to compute stationary vortex states: an imaginary time propagation method and a Sobolev gradient descent method. We first address the basic issue of the choice of the variable used to compute new metrics for the mesh adaptivity and show that simultaneously refinement using the real and imaginary part of the solution is successful. Mesh refinement using only the modulus of the solution as adaptivity variable fails for complicated test cases. Then we suggest an optimized algorithm for adapting the mesh during the evolution of the solution towards the equilibrium state. Considerable computational time saving is obtained compared to uniform mesh computations. The new method is applied to compute difficult cases relevant for physical experiments (large nonlinear interaction constant and high rotation rates).Comment: to appear in J. Computational Physic
    corecore