1,043 research outputs found

    THE PERFORMANCE OF SOFT CHEKPOINTING APPROACH IN MOBILE COMPUTING SYSTEMS

    Get PDF
    Mobile computing raises many new issues such as lack of stable storage, low bandwidth of wireless channel, high mobility, and limited battery life. These new issues make traditional checkpointing algorithms unsuitable. Coordinated checkpointing is an attractive approach for transparently adding fault tolerance to distributed applications since it avoids domino effects and minimizes the stable storage requirement. However, it suffers from high overhead associated with the checkpointing process in mobile computing systems. In literature mostly, two approaches have been used to reduce the overhead: First is to minimize the number of synchronization messages and the number of checkpoints; the other is to make the checkpointing process nonblocking. Since MHs are prone to failure, so they have to transfer a large amount of checkpoint data and control information to its local MSS which increases bandwidth overhead. In this paper, we introduce the concept of 201C;Soft checkpoint201D; which is neither a tentative checkpoint nor a permanent checkpoint, to design efficient checkpointing algorithms for mobile computing systems. Soft checkpoints can be saved anywhere, e.g., the main memory or local disk of MHs. Before disconnecting from the MSS, these soft checkpoints are converted to hard checkpoints and are sent to MSSs stable storage. In this way, taking a soft checkpoint avoids the overhead of transferring large amounts of data to the stable storage at MSSs over the wireless network. We have also shown that our soft checkpointing scheme also adapts its behaviour to the characteristics of network

    ALGORITHMS FOR FAULT TOLERANCE IN DISTRIBUTED SYSTEMS AND ROUTING IN AD HOC NETWORKS

    Get PDF
    Checkpointing and rollback recovery are well-known techniques for coping with failures in distributed systems. Future generation Supercomputers will be message passing distributed systems consisting of millions of processors. As the number of processors grow, failure rate also grows. Thus, designing efficient checkpointing and recovery algorithms for coping with failures in such large systems is important for these systems to be fully utilized. We presented a novel communication-induced checkpointing algorithm which helps in reducing contention for accessing stable storage to store checkpoints. Under our algorithm, a process involved in a distributed computation can independently initiate consistent global checkpointing by saving its current state, called a tentative checkpoint. Other processes involved in the computation come to know about the consistent global checkpoint initiation through information piggy-backed with the application messages or limited control messages if necessary. When a process comes to know about a new consistent global checkpoint initiation, it takes a tentative checkpoint after processing the message. The tentative checkpoints taken can be flushed to stable storage when there is no contention for accessing stable storage. The tentative checkpoints together with the message logs stored in the stable storage form a consistent global checkpoint. Ad hoc networks consist of a set of nodes that can form a network for communication with each other without the aid of any infrastructure or human intervention. Nodes are energy-constrained and hence routing algorithm designed for these networks should take this into consideration. We proposed two routing protocols for mobile ad hoc networks which prevent nodes from broadcasting route requests unnecessarily during the route discovery phase and hence conserve energy and prevent contention in the network. One is called Triangle Based Routing (TBR) protocol. The other routing protocol we designed is called Routing Protocol with Selective Forwarding (RPSF). Both of the routing protocols greatly reduce the number of control packets which are needed to establish routes between pairs of source nodes and destination nodes. As a result, they reduce the energy consumed for route discovery. Moreover, these protocols reduce congestion and collision of packets due to limited number of nodes retransmitting the route requests

    Reliable distributed data stream management in mobile environments

    Get PDF
    The proliferation of sensor technology, especially in the context of embedded systems, has brought forward novel types of applications that make use of streams of continuously generated sensor data. Many applications like telemonitoring in healthcare or roadside traffic monitoring and control particularly require data stream management (DSM) to be provided in a distributed, yet reliable way. This is even more important when DSM applications are deployed in a failure-prone distributed setting including resource-limited mobile devices, for instance in applications which aim at remotely monitoring mobile patients. In this paper, we introduce a model for distributed and reliable DSM. The contribution of this paper is threefold. First, in analogy to the SQL isolation levels, we define levels of reliability and describe necessary consistency constraints for distributed DSM that specify the tolerated loss, delay, or re-ordering of data stream elements, respectively. Second, we use this model to design and analyze an algorithm for reliable distributed DSM, namely efficient coordinated operator checkpointing (ECOC). We show that ECOC provides lossless and delay-limited reliable data stream management and thus can be used in critical application domains such as healthcare, where the loss of data stream elements can not be tolerated. Third, we present detailed performance evaluations of the ECOC algorithm running on mobile, resource-limited devices. In particular, we can show that ECOC provides a high level of reliability while, at the same time, featuring good performance characteristics with moderate resource consumption

    Design and analysis of an efficient energy algorithm in wireless social sensor networks

    Get PDF
    Because mobile ad hoc networks have characteristics such as lack of center nodes, multi-hop routing and changeable topology, the existing checkpoint technologies for normal mobile networks cannot be applied well to mobile ad hoc networks. Considering the multi-frequency hierarchy structure of ad hoc networks, this paper proposes a hybrid checkpointing strategy which combines the techniques of synchronous checkpointing with asynchronous checkpointing, namely the checkpoints of mobile terminals in the same cluster remain synchronous, and the checkpoints in different clusters remain asynchronous. This strategy could not only avoid cascading rollback among the processes in the same cluster, but also avoid too many message transmissions among the processes in different clusters. What is more, it can reduce the communication delay. In order to assure the consistency of the global states, this paper discusses the correctness criteria of hybrid checkpointing, which includes the criteria of checkpoint taking, rollback recovery and indelibility. Based on the designed Intra-Cluster Checkpoint Dependence Graph and Inter-Cluster Checkpoint Dependence Graph, the elimination rules for different kinds of checkpoints are discussed, and the algorithms for the same cluster checkpoints, different cluster checkpoints, and rollback recovery are also given. Experimental results demonstrate the proposed hybrid checkpointing strategy is a preferable trade-off method, which not only synthetically takes all kinds of resource constraints of Ad hoc networks into account, but also outperforms the existing schemes in terms of the dependence to cluster heads, the recovery time compared to the pure synchronous, and the pure asynchronous checkpoint advantage. © 2017 by the authors. Licensee MDPI, Basel, Switzerland

    THE PERFORMANCE OF SOFT CHEKPOINTING APPROACH IN MOBILE COMPUTING SYSTEMS

    Get PDF
    Mobile computing raises many new issues such as lack of stable storage, low bandwidth of wireless channel, high mobility, and limited battery life. These new issues make traditional checkpointing algorithms unsuitable. Coordinated checkpointing is an attractive approach for transparently adding fault tolerance to distributed applications since it avoids domino effects and minimizes the stable storage requirement. However, it suffers from high overhead associated with the checkpointing process in mobile computing systems. In literature mostly, two approaches have been used to reduce the overhead: First is to minimize the number of synchronization messages and the number of checkpoints; the other is to make the checkpointing process nonblocking. Since MHs are prone to failure, so they have to transfer a large amount of checkpoint data and control information to its local MSS which increases bandwidth overhead. In this paper, we introduce the concept of “Soft checkpoint” which is neither a tentative checkpoint nor a permanent checkpoint, to design efficient checkpointing algorithms for mobile computing systems. Soft checkpoints can be saved anywhere, e.g., the main memory or local disk of MHs. Before disconnecting from the MSS, these soft checkpoints are converted to hard checkpoints and are sent to MSSs stable storage. In this way, taking a soft checkpoint avoids the overhead of transferring large amounts of data to the stable storage at MSSs over the wireless network. We have also shown that our soft checkpointing scheme also adapts its behaviour to the characteristics of network

    An enhanced index-based checkpointing algorithm for distributed systems

    Get PDF
    Rollback-recovery in distributed systems is important for fault-tolerant computing. Without fault tolerance mechanisms, an application running on a system has to be restarted from scratch if a fault happens in the middle of its execution, resulting in loss of useful computation. To provide efficient rollback-recovery for fault-tolerance in distributed systems, it is significant to reduce the number of checkpoints under the existence of consistent global checkpoints in index-based distributed checkpointing algorithms. Because of the dependencies among the processes states that induced by inter-process communication in distributed systems, asynchronous checkpointing may suffer from the domino effect. Therefore, a consistent global checkpoint should always be ensured to restrict the rollback distance. The quasi-synchronous checkpointing protocols achieve synchronization in a loose fashion. Index-based checkpointing algorithm is a kind of typical quasi- synchronous checkpointing mechanism. The algorithm proposed in this thesis follows a new strategy to update the checkpoint interval dynamically as opposed to the static interval used by the existing algorithms explained in the previous chapter. Whenever a process takes a forced checkpoint due to the reception of a message with sequence number higher than the sequence number of the process, the checkpoint interval is either reset or the next basic checkpoint is skipped depending on when the massage has been received. The simulation is built on SPIN, a tool to trace logical design errors and check the logical consistency of protocols and algorithms in distributed systems. Simulation results show that the proposed scheme can reduce the number of induced forced-checkpoints per message 27- 32% on an average as compared to the traditional strategies
    corecore