1,025 research outputs found

    Computer Science Principles with Java

    Get PDF
    This textbook is intended to be used for a first course in computer science, such as the College Board’s Advanced Placement course known as AP Computer Science Principles (CSP). This book includes all the topics on the CSP exam, plus some additional topics. It takes a breadth-first approach, with an emphasis on the principles which form the foundation for hardware and software. No prior experience with programming should be required to use this book. This version of the book uses the Java programming language.https://rdw.rowan.edu/oer/1018/thumbnail.jp

    Techniques for Processing TCP/IP Flow Content in Network Switches at Gigabit Line Rates

    Get PDF
    The growth of the Internet has enabled it to become a critical component used by businesses, governments and individuals. While most of the traffic on the Internet is legitimate, a proportion of the traffic includes worms, computer viruses, network intrusions, computer espionage, security breaches and illegal behavior. This rogue traffic causes computer and network outages, reduces network throughput, and costs governments and companies billions of dollars each year. This dissertation investigates the problems associated with TCP stream processing in high-speed networks. It describes an architecture that simplifies the processing of TCP data streams in these environments and presents a hardware circuit capable of TCP stream processing on multi-gigabit networks for millions of simultaneous network connections. Live Internet traffic is analyzed using this new TCP processing circuit

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Digital imaging technology assessment: Digital document storage project

    Get PDF
    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes

    Computer Science Principles with C++

    Get PDF
    This textbook is intended to be used for a first course in computer science, such as the College Board’s Advanced Placement course known as AP Computer Science Principles (CSP). This book includes all the topics on the CSP exam, plus some additional topics. It takes a breadth-first approach, with an emphasis on the principles which form the foundation for hardware and software. No prior experience with programming should be required to use this book. This version of the book uses the C++ programming language.https://rdw.rowan.edu/oer/1025/thumbnail.jp

    Data Mining Methods For Malware Detection

    Get PDF
    This research investigates the use of data mining methods for malware (malicious programs) detection and proposed a framework as an alternative to the traditional signature detection methods. The traditional approaches using signatures to detect malicious programs fails for the new and unknown malwares case, where signatures are not available. We present a data mining framework to detect malicious programs. We collected, analyzed and processed several thousand malicious and clean programs to find out the best features and build models that can classify a given program into a malware or a clean class. Our research is closely related to information retrieval and classification techniques and borrows a number of ideas from the field. We used a vector space model to represent the programs in our collection. Our data mining framework includes two separate and distinct classes of experiments. The first are the supervised learning experiments that used a dataset, consisting of several thousand malicious and clean program samples to train, validate and test, an array of classifiers. In the second class of experiments, we proposed using sequential association analysis for feature selection and automatic signature extraction. With our experiments, we were able to achieve as high as 98.4% detection rate and as low as 1.9% false positive rate on novel malwares

    Computer Science Principles with Python

    Get PDF
    This textbook is intended to be used for a first course in computer science, such as the College Board’s Advanced Placement course known as AP Computer Science Principles (CSP). This book includes all the topics on the CSP exam, plus some additional topics. It takes a breadth-first approach, with an emphasis on the principles which form the foundation for hardware and software. No prior experience with programming should be required to use this book. This version of the book uses the Python programming language.https://rdw.rowan.edu/oer/1024/thumbnail.jp

    Algorithms and Architectures for Network Search Processors

    Get PDF
    The continuous growth in the Internet’s size, the amount of data traffic, and the complexity of processing this traffic gives rise to new challenges in building high-performance network devices. One of the most fundamental tasks performed by these devices is searching the network data for predefined keys. Address lookup, packet classification, and deep packet inspection are some of the operations which involve table lookups and searching. These operations are typically part of the packet forwarding mechanism, and can create a performance bottleneck. Therefore, fast and resource efficient algorithms are required. One of the most commonly used techniques for such searching operations is the Ternary Content Addressable Memory (TCAM). While TCAM can offer very fast search speeds, it is costly and consumes a large amount of power. Hence, designing cost-effective, power-efficient, and high-speed search techniques has received a great deal of attention in the research and industrial community. In this thesis, we propose a generic search technique based on Bloom filters. A Bloom filter is a randomized data structure used to represent a set of bit-strings compactly and support set membership queries. We demonstrate techniques to convert the search process into table lookups. The resulting table data structures are kept in the off-chip memory and their Bloom filter representations are kept in the on-chip memory. An item needs to be looked up in the off-chip table only when it is found in the on-chip Bloom filters. By filtering the off-chip memory accesses in this fashion, the search operations can be significantly accelerated. Our approach involves a unique combination of algorithmic and architectural techniques that outperform some of the current techniques in terms of cost-effectiveness, speed, and power-efficiency

    Automated Analysis of ARM Binaries using the Low-Level Virtual Machine Compiler Framework

    Get PDF
    Binary program analysis is a critical capability for offensive and defensive operations in Cyberspace. However, many current techniques are ineffective or time-consuming and few tools can analyze code compiled for embedded processors such as those used in network interface cards, control systems and mobile phones. This research designs and implements a binary analysis system, called the Architecture-independent Binary Abstracting Code Analysis System (ABACAS), which reverses the normal program compilation process, lifting binary machine code to the Low-Level Virtual Machine (LLVM) compiler\u27s intermediate representation, thereby enabling existing security-related analyses to be applied to binary programs. The prototype targets ARM binaries but can be extended to support other architectures. Several programs are translated from ARM binaries and analyzed with existing analysis tools. Programs lifted from ARM binaries are an average of 3.73 times larger than the same programs compiled from a high-level language (HLL). Analysis results are equivalent regardless of whether the HLL source or ARM binary version of the program is submitted to the system, confirming the hypothesis that LLVM is effective for binary analysis

    Big data analytics: a predictive analysis applied to cybersecurity in a financial organization

    Get PDF
    Project Work presented as partial requirement for obtaining the Master’s degree in Information Management, with a specialization in Knowledge Management and Business IntelligenceWith the generalization of the internet access, cyber attacks have registered an alarming growth in frequency and severity of damages, along with the awareness of organizations with heavy investments in cybersecurity, such as in the financial sector. This work is focused on an organization’s financial service that operates on the international markets in the payment systems industry. The objective was to develop a predictive framework solution responsible for threat detection to support the security team to open investigations on intrusive server requests, over the exponentially growing log events collected by the SIEM from the Apache Web Servers for the financial service. A Big Data framework, using Hadoop and Spark, was developed to perform classification tasks over the financial service requests, using Neural Networks, Logistic Regression, SVM, and Random Forests algorithms, while handling the training of the imbalance dataset through BEV. The main conclusions over the analysis conducted, registered the best scoring performances for the Random Forests classifier using all the preprocessed features available. Using the all the available worker nodes with a balanced configuration of the Spark executors, the most performant elapsed times for loading and preprocessing of the data were achieved using the column-oriented ORC with native format, while the row-oriented CSV format performed the best for the training of the classifiers.Com a generalização do acesso à internet, os ciberataques registaram um crescimento alarmante em frequência e severidade de danos causados, a par da consciencialização das organizações, com elevados investimentos em cibersegurança, como no setor financeiro. Este trabalho focou-se no serviço financeiro de uma organização que opera nos mercados internacionais da indústria de sistemas de pagamento. O objetivo consistiu no desenvolvimento uma solução preditiva responsável pela detecção de ameaças, por forma a dar suporte à equipa de segurança na abertura de investigações sobre pedidos intrusivos no servidor, relativamente aos exponencialmente crescentes eventos de log coletados pelo SIEM, referentes aos Apache Web Servers, para o serviço financeiro. Uma solução de Big Data, usando Hadoop e Spark, foi desenvolvida com o objectivo de executar tarefas de classificação sobre os pedidos do serviço financeiros, usando os algoritmos Neural Networks, Logistic Regression, SVM e Random Forests, solucionando os problemas associados ao treino de um dataset desequilibrado através de BEV. As principais conclusões sobre as análises realizadas registaram os melhores resultados de classificação usando o algoritmo Random Forests com todas as variáveis pré-processadas disponíveis. Usando todos os nós do cluster e uma configuração balanceada dos executores do Spark, os melhores tempos para carregar e pré-processar os dados foram obtidos usando o formato colunar ORC nativo, enquanto o formato CSV, orientado a linhas, apresentou os melhores tempos para o treino dos classificadores
    corecore