2,030 research outputs found

    Continuous variable controlled quantum dialogue and secure multiparty quantum computation

    Full text link
    A continuous variable controlled quantum dialogue scheme is proposed. The scheme is further modified to obtain two other protocols of continuous variable secure multiparty computation. The first one of these protocols provides a solution of two party socialist millionaire problem, while the second protocol provides a solution for a special type of multi-party socialist millionaire problem which can be viewed as a protocol for multiparty quantum private comparison. It is shown that the proposed scheme of continuous variable controlled quantum dialogue can be performed using bipartite entanglement and can be reduced to obtain several other two and three party cryptographic schemes in the limiting cases. The security of the proposed scheme and its advantage over corresponding discrete variable counterpart are also discussed. Specifically, the ignorance of an eavesdropper in the proposed scheme is shown to be very high compared with corresponding discrete variable scheme and thus the present scheme is less prone to information leakage inherent with the discrete variable quantum dialogue based schemes.It is further established that the proposed scheme can be viewed as a continuous variable counterpart of quantum cryptographic switch which allows a supervisor to control the information transferred between the two legitimate parties to a continuously varying degree.Comment: Quantum dialogue and its application in the continuous variable scenario is studied in detai

    The Evolution of Personal Wealth in the Former Soviet Union and Central and Eastern Europe

    Get PDF
    inequality, wealth distribution, oligarchs, privatization

    Quantum Private Comparison: A Review

    Full text link
    As an important branch of quantum secure multiparty computation, quantum private comparison (QPC) has attracted more and more attention recently. In this paper, according to the quantum implementation mechanism that these protocols used, we divide these protocols into three categories: The quantum cryptography QPC, the superdense coding QPC, and the entanglement swapping QPC. And then, a more in-depth analysis on the research progress, design idea, and substantive characteristics of corresponding QPC categories is carried out, respectively. Finally, the applications of QPC and quantum secure multi-party computation issues are discussed and, in addition, three possible research mainstream directions are pointed out

    TFHE-rs: A library for safe and secure remote computing using fully homomorphic encryption and trusted execution environments

    Get PDF
    Fully Homomorphic Encryption (FHE) and Trusted Execution Environ-ments (TEEs) are complementing approaches that can both secure computa-tions running remotely on a public cloud. Existing FHE schemes are, however, malleable by design and lack integrity protection, making them susceptible to integrity breaches where an adversary could modify the data and corrupt the output. This paper describes how both confidentiality and integrity of remote compu-tations can be assured by combining FHE with hardware based secure enclave technologies. We provide a software library for performing FHE within the Intel SGX TEE, written in the memory-safe programming language Rust to strengthen the internal safety of software and reduce its attack surface. We evaluate a sample application written with our library. We demonstrate that we can feasibly combine these concepts and provide stronger security guar-antees with a minimal development effort

    Non-interactive fuzzy private matching

    Get PDF
    Two fuzzy private matching protocols are introduced to allow a client to securely compare a list of words to a server list, and discover only those words on the server list that are similar to his, while the server learns nothing. The first protocol achieves perfect client security, while the second achieves almostprivacy and perfect server security. Both protocols are efficient in both communication and computation complexity: for lists of length nn, only O(n)O(n) communication and O(n2)O(n^2) computation is needed

    Data Mining Applications in Banking Sector While Preserving Customer Privacy

    Get PDF
    In real-life data mining applications, organizations cooperate by using each other’s data on the same data mining task for more accurate results, although they may have different security and privacy concerns. Privacy-preserving data mining (PPDM) practices involve rules and techniques that allow parties to collaborate on data mining applications while keeping their data private. The objective of this paper is to present a number of PPDM protocols and show how PPDM can be used in data mining applications in the banking sector. For this purpose, the paper discusses homomorphic cryptosystems and secure multiparty computing. Supported by experimental analysis, the paper demonstrates that data mining tasks such as clustering and Bayesian networks (association rules) that are commonly used in the banking sector can be efficiently and securely performed. This is the first study that combines PPDM protocols with applications for banking data mining. Doi: 10.28991/ESJ-2022-06-06-014 Full Text: PD
    • 

    corecore