257 research outputs found

    Dynamic Modelling of an Automated Vehicle Storage and Retrieval System and a Simulation Analysis of its Efficiency

    Get PDF
    In this paper operating-time models for single and multiple instructions are set up considering an AVS/RS (automated vehicle storage and retrieval system). The operation times of AVS/RS and AS/RS (automated storage and retrieval system) are simulated in different situations by changing the shelf structure and order density. The results show that the AVS/RS is more efficient than the AS/RS in all situations. Furthermore, the numbers of rows and columns of storage shelves greatly influence the operation time. The graph of operation-time compression ratio against number of columns shows an inverted U-type distribution, and the compression ratio decreases and ultimately tends to zero as the number of rows is increased. Also, the order density affects the efficiency difference between the two systems: the higher the order density, the higher the AVS/RS operating-time compression rate. Finally, compared with the AS/RS, the AVS/RS operating-time compression ratio improves greatly with increasing density and number of rows because of parallel operations, whereas with decreasing density and number of rows the AVS/RS advantages are gradually lost and the compression ratio decreases and eventually even reaches zero

    A Novel Autonomous Vehicle-based Storage and Retrieval System with Movable Lifts

    Get PDF

    A Novel Autonomous Vehicle-based Storage and Retrieval System with Movable Lifts

    Get PDF
    This paper presents a novel autonomous vehicle-based storage and retrieval system with movable lifts (AVS/RS/ML) as an alternative automated warehousing technology to tier-captive shuttle-based storage and retrieval systems (SBS/RS). The proposed system aims to provide a cost-effective, highly efficient, and adaptable solution for warehouse operations utilizing automated guided vehicles (AGVs) capable of travelling both inside and outside the warehouse. We simulate and analyse the system\u27s performance based on its initial investment cost, throughput capacity, and average utilization of AGVs and movable lifts (MLs) under different warehouse designs

    Method for evaluating the throughput performance of shuttle based storage and retrieval systems

    Get PDF
    U ovom radu prezentira se metoda proračuna protočne performanse skladišnih sustava sa shuttle-ovima/vozilima (eng. SBS/RS). SBS/RS zastupaju novu tehnologiju automatiziranih skladišnih sustava. S obzirom na važnost ispravnog oblikovanja (projektiranja) SBS/RS sustava "od prve" zbog relativne nefleksibilnosti fizičke izvedbe, prezentira se predložena metoda proračuna protočne performanse takvih sustava. Performansa sustava razmatra se kao protočni kapacitet SBS/RS kao cjeline.In this paper a method for throughput performance calculation of shuttle based storage and retrieval systems (SBS/RS) is presented. SBS/RS represent a new technology in automated storage and retrieval systems. Since it is important to design SBS/RS right the first time due to the relative inflexibility of the physical layout, we provide a proposed method for the throughput performance calculation of these systems. The performance of the system is considered as a throughput capacity of the SBS/RS as a whole

    Robotized Warehouse Systems: Developments and Research Opportunities

    Get PDF
    Robotized handling systems are increasingly applied in distribution centers. They require little space, provide flexibility in managing varying demand requirements, and are able to work 24/7. This makes them particularly fit for e-commerce operations. This paper reviews new categories of robotized handling systems, such as the shuttle-based storage and retrieval systems, shuttle-based compact storage systems, and robotic mobile fulfillment systems. For each system, we categorize the literature in three groups: system analysis, design optimization, and operations planning and control. Our focus is to identify the research issue and OR modeling methodology adopted to analyze the problem. We find that many new robotic systems and applications have hardly been studied in academic literature, despite their increasing use in practice. Due to unique system features (such as autonomous control, networked and dynamic operation), new models and methods are needed to address the design and operational control challenges for such systems, in particular, for the integration of subsystems. Integrated robotized warehouse systems will form the next category of warehouses. All vital warehouse design, planning and control logic such as methods to design layout, storage and order picking system selection, storage slotting, order batching, picker routing, and picker to order assignment will have to be revisited for new robotized warehouses

    Performance evaluation of shuttle-based storage and retrieval systems using discrete-time queueing network models

    Get PDF
    Shuttle-based storage and retrieval systems (SBS/RSs) are an important part of today‘s warehouses. In this work, a new approach is developed that can be applied to model different configurations of SBS/RSs. The approach is based on the modeling of SBS/RSs as discrete-time open queueing networks and yields the complete probability distributions of the performance measures

    A Review on Automated Storage/ Retrieval Systems and Shuttle Based Storage/Retrieval Systems

    Get PDF
    Automated storage and retrieval systems are warehousing systems that are used for the storage and retrieval of products in both distribution and production environments. Shuttle based storage/retrieval systems are composed of elevators with lifting tables that are attached on a mast, shuttle carriers, buffer positions and the storage racks. It is observed that the shuttle based storage/retrieval systems increases the throughput capacity of the systems compared to automated storage/retrieval systems. Shuttle based storage/retrieval systems is relatively a new technology in automated storage and retrieval systems and usually works with aisle and tier captive shuttles. This new technology is mostly used for mini-load warehouses. The main body of the paper consists of an overview of literature discussing automated storage/retrieval systems and shuttle based storage/retrieval systems

    Hybrid model for the design of a deep-lane multisatellite AVS/RS

    Get PDF
    The autonomous vehicle storage and retrieval system (AVS/RS) significantly improves the responsiveness and throughput of the traditional automated storage and retrieval system (AS/RS) in regard to handling unit loads. The AVS/RS consists of multiple tiers connected to an elevator system and is equipped with at least two autonomous vehicles, that is, a shuttle and satellite. Other necessary equipment are the lifts and input/output buffer areas. This paper aims to present and apply an original hybrid analytical-simulative model for the design of a deep-lane and multisatellite AVS-RS by evaluating and controlling the system performance. This AVS-RS is equipped with multiple free and non-free satellites for each tier. As an original contribution, this study reviews the literature on AVS/RS according to the introduction of multiple features categorized into five homogeneous groups: (1) rack configuration, (2) vehicle kinematics and configuration, (3) dispatching rules, (4) modeling approach, and (5) validation. Two of the most critical issues in existing research studies are the random arrival time of storage and retrieval transactions and the random storage policy. The proposed modeling approach is data-driven and based on realistic assumptions, filling the gap between the literature and real applications. This hybrid model is applied to a case study of the beverage industry according to a what-if comparative and competitive multiscenario analysis. This data-driven assessment supports the decision-making process on the number of satellites for each tier, while simultaneously controlling the service and waiting times, system throughput, and vehicle utilization. The analysis based on the maximum system throughput estimation demonstrates that introducing more than two satellites does not increase the productivity of the system

    Multi-objective optimisation model of shuttle-based storage and retrieval system

    Get PDF
    This paper presents a multi-objective optimisation solution procedure for the design of the Shuttle-Based Storage and Retrieval System (SBS/RS). An efficient SBS/RS design should take into account multi-objectives for optimization. In this study, we considered three objective functions in the design concept which are the minimization of average cycle time of transactions (average throughput time), amount of energy (electricity) consumption and total investment cost. By also considering the amount of energy consumption as an objective function for minimization, we aimed to contribute to an environmentally friendly design concept. During the optimization procedure, we considered seven design variables as number of aisles, number of tiers, number of columns, velocities of shuttle carriers, acceleration/deceleration of shuttle carriers, velocity of the elevators lifting tables and acceleration/deceleration of the elevators lifting tables. Due to the non-linear property of the objective function, we utilized the Non-Dominated Sorting Genetic Algorithm II (NSGA II) genetic algorithm for facilitating the solution. Lastly, we searched Pareto optimal solutions to find out the optimum results. We believe that this study provides a useful and a flexible tool for warehouse planners and designers, while choosing a particular type of SBS/RS at the early stage of the warehouse design. First published online: 12 May 201

    Vertical or Horizontal Transport? - Comparison of robotic storage and retrieval systems

    Get PDF
    Autonomous vehicle-based storage and retrieval systems are commonly used in e-commerce fulfillment as they allow a high and flexible throughput capacity. In these systems, roaming robots transport loads between a storage location and a workstation. Two main variants exist: Horizontal, where the robots only move horizontally and use lifts for vertical transport and a new variant Vertical, where the robots can also travel vertically in the rack. This paper builds a framework to analyze the performance of the vertical system and to compare its throughput capacity with the horizontal system. We build closed-queueing network models for this that in turn are used to optimize the design. The results show that the optimal height-to-width ratio of a vertical system is around 1. As a large number of system robots may lead to blocking and delays, we compare the effect of two different robot blocking protocols on the system throughput: robot Recirculation and Wait-On-Spot. The Wait-On-Spot policy produces a higher system throughput when the number of robots in the system is small. However, for a large number of robots in the system, the Recirculation policy dominates the Wait-On-Spot policy. Finally, we compare the operational costs of the vertical and the horizontal transport system. For systems with one load/unload (L/U) point, the vertical system always produces a similar or higher system throughput, with a lower operating cost comp
    corecore