34,247 research outputs found

    Pervasive intelligent routing in content centric delay tolerant networks

    Get PDF
    This paper introduces a Swarm-Intelligence based Routing protocol (SIR) that aims to efficiently route information in content centric Delay Tolerant Networks (CCDTN) also dubbed pocket switched networks. First, this paper formalizes the notion of optimal path in CCDTN and introduces an original and efficient algorithm to process these paths in dynamic graphs. The properties and some invariant features of these optimal paths are analyzed and derived from several real traces. Then, this paper shows how optimal path in CCDTN can be found and used from a fully distributed swarm-intelligence based approach of which the global intelligent behavior (i.e. shortest path discovery and use) emerges from simple peer to peer interactions applied during opportunistic contacts. This leads to the definition of the SIR routing protocol of which the consistency, efficiency and performances are demonstrated from intensive representative simulations

    Two betweenness centrality measures based on Randomized Shortest Paths

    Full text link
    This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP's have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice.Comment: Minor updates; published in Scientific Report

    Deep Learning for Link Prediction in Dynamic Networks using Weak Estimators

    Full text link
    Link prediction is the task of evaluating the probability that an edge exists in a network, and it has useful applications in many domains. Traditional approaches rely on measuring the similarity between two nodes in a static context. Recent research has focused on extending link prediction to a dynamic setting, predicting the creation and destruction of links in networks that evolve over time. Though a difficult task, the employment of deep learning techniques have shown to make notable improvements to the accuracy of predictions. To this end, we propose the novel application of weak estimators in addition to the utilization of traditional similarity metrics to inexpensively build an effective feature vector for a deep neural network. Weak estimators have been used in a variety of machine learning algorithms to improve model accuracy, owing to their capacity to estimate changing probabilities in dynamic systems. Experiments indicate that our approach results in increased prediction accuracy on several real-world dynamic networks

    Micro-Macro Analysis of Complex Networks

    Get PDF
    Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a \u201cclassic\u201d approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail (\u201cmicro\u201d) to a different scale level (\u201cmacro\u201d), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability

    A Method to Find Community Structures Based on Information Centrality

    Full text link
    Community structures are an important feature of many social, biological and technological networks. Here we study a variation on the method for detecting such communities proposed by Girvan and Newman and based on the idea of using centrality measures to define the community boundaries (M. Girvan and M. E. J. Newman, Community structure in social and biological networks Proc. Natl. Acad. Sci. USA 99, 7821-7826 (2002)). We develop an algorithm of hierarchical clustering that consists in finding and removing iteratively the edge with the highest information centrality. We test the algorithm on computer generated and real-world networks whose community structure is already known or has been studied by means of other methods. We show that our algorithm, although it runs to completion in a time O(n^4), is very effective especially when the communities are very mixed and hardly detectable by the other methods.Comment: 13 pages, 13 figures. Final version accepted for publication in Physical Review

    Approximate Closest Community Search in Networks

    Get PDF
    Recently, there has been significant interest in the study of the community search problem in social and information networks: given one or more query nodes, find densely connected communities containing the query nodes. However, most existing studies do not address the "free rider" issue, that is, nodes far away from query nodes and irrelevant to them are included in the detected community. Some state-of-the-art models have attempted to address this issue, but not only are their formulated problems NP-hard, they do not admit any approximations without restrictive assumptions, which may not always hold in practice. In this paper, given an undirected graph G and a set of query nodes Q, we study community search using the k-truss based community model. We formulate our problem of finding a closest truss community (CTC), as finding a connected k-truss subgraph with the largest k that contains Q, and has the minimum diameter among such subgraphs. We prove this problem is NP-hard. Furthermore, it is NP-hard to approximate the problem within a factor (2ε)(2-\varepsilon), for any ε>0\varepsilon >0 . However, we develop a greedy algorithmic framework, which first finds a CTC containing Q, and then iteratively removes the furthest nodes from Q, from the graph. The method achieves 2-approximation to the optimal solution. To further improve the efficiency, we make use of a compact truss index and develop efficient algorithms for k-truss identification and maintenance as nodes get eliminated. In addition, using bulk deletion optimization and local exploration strategies, we propose two more efficient algorithms. One of them trades some approximation quality for efficiency while the other is a very efficient heuristic. Extensive experiments on 6 real-world networks show the effectiveness and efficiency of our community model and search algorithms

    Detection of Core-Periphery Structure in Networks Using Spectral Methods and Geodesic Paths

    Full text link
    We introduce several novel and computationally efficient methods for detecting "core--periphery structure" in networks. Core--periphery structure is a type of mesoscale structure that includes densely-connected core vertices and sparsely-connected peripheral vertices. Core vertices tend to be well-connected both among themselves and to peripheral vertices, which tend not to be well-connected to other vertices. Our first method, which is based on transportation in networks, aggregates information from many geodesic paths in a network and yields a score for each vertex that reflects the likelihood that a vertex is a core vertex. Our second method is based on a low-rank approximation of a network's adjacency matrix, which can often be expressed as a tensor-product matrix. Our third approach uses the bottom eigenvector of the random-walk Laplacian to infer a coreness score and a classification into core and peripheral vertices. We also design an objective function to (1) help classify vertices into core or peripheral vertices and (2) provide a goodness-of-fit criterion for classifications into core versus peripheral vertices. To examine the performance of our methods, we apply our algorithms to both synthetically-generated networks and a variety of networks constructed from real-world data sets.Comment: This article is part of EJAM's December 2016 special issue on "Network Analysis and Modelling" (available at https://www.cambridge.org/core/journals/european-journal-of-applied-mathematics/issue/journal-ejm-volume-27-issue-6/D245C89CABF55DBF573BB412F7651ADB
    corecore