13,434 research outputs found

    Flexible Service Provisioning for Heterogeneous Sensor Networks

    Get PDF
    This paper presents Servilla, a highly flexible service provisioning framework for heterogeneous wireless sensor networks. Its service-oriented programming model and middleware enable developers to construct platform-independent applications over a dynamic set of devices with diverse computational resources and sensors. A salient feature of Servilla is its support for dynamic discovery and binding to local and remote services, which enables flexible and energy-efficient in-network collaboration among heterogeneous devices. Furthermore, Servilla provides a modular middleware architecture that can be easily tailored for devices with a wide range of resources, allowing even resource-limited devices to provide services and leverage resource-rich devices for in-network processing. Microbenchmarks demonstrate the efficiency of Servilla\u27s middleware, and an application case study for structural health monitoring on a heterogeneous testbed consisting of TelosB and Imote2 nodes demonstrates the efficacy of its programming model.This paper is replaced by tech report WUCSE-2009-2

    Real-life performance of protocol combinations for wireless sensor networks

    Get PDF
    Wireless sensor networks today are used for many and diverse applications like nature monitoring, or process and wireless building automation. However, due to the limited access to large testbeds and the lack of benchmarking standards, the real-life evaluation of network protocols and their combinations remains mostly unaddressed in current literature. To shed further light upon this matter, this paper presents a thorough experimental performance analysis of six protocol combinations for TinyOS. During these protocol assessments, our research showed that the real-life performance often differs substantially from the expectations. Moreover, we found that combining protocols is far from trivial, as individual network protocols may perform very different in combination with other protocols. The results of our research emphasize the necessity of a flexible generic benchmarking framework, powerful enough to evaluate and compare network protocols and their combinations in different use cases

    Supporting protocol-independent adaptive QoS in wireless sensor networks

    Get PDF
    Next-generation wireless sensor networks will be used for many diverse applications in time-varying network/environment conditions and on heterogeneous sensor nodes. Although Quality of Service (QoS) has been ignored for a long time in the research on wireless sensor networks, it becomes inevitably important when we want to deliver an adequate service with minimal efforts under challenging network conditions. Until now, there exist no general-purpose QoS architectures for wireless sensor networks and the main QoS efforts were done in terms of individual protocol optimizations. In this paper we present a novel layerless QoS architecture that supports protocol-independent QoS and that can adapt itself to time-varying application, network and node conditions. We have implemented this QoS architecture in TinyOS on TmoteSky sensor nodes and we have shown that the system is able to support protocol-independent QoS in a real life office environment
    corecore