5,002 research outputs found

    The combination of spatial access methods and computational geometry in geographic database systems

    Get PDF
    Geographic database systems, known as geographic information systems (GISs) particularly among non-computer scientists, are one of the most important applications of the very active research area named spatial database systems. Consequently following the database approach, a GIS hag to be seamless, i.e. store the complete area of interest (e.g. the whole world) in one database map. For exhibiting acceptable performance a seamless GIS hag to use spatial access methods. Due to the complexity of query and analysis operations on geographic objects, state-of-the-art computational geomeny concepts have to be used in implementing these operations. In this paper, we present GIS operations based on the compuational geomeny technique plane sweep. Specifically, we show how the two ingredients spatial access methods and computational geomeny concepts can be combined für improving the performance of GIS operations. The fruitfulness of this combination is based on the fact that spatial access methods efficiently provide the data at the time when computational geomeny algorithms need it für processing. Additionally, this combination avoids page faults and facilitates the parallelization of the algorithms.

    Targeted matrix completion

    Full text link
    Matrix completion is a problem that arises in many data-analysis settings where the input consists of a partially-observed matrix (e.g., recommender systems, traffic matrix analysis etc.). Classical approaches to matrix completion assume that the input partially-observed matrix is low rank. The success of these methods depends on the number of observed entries and the rank of the matrix; the larger the rank, the more entries need to be observed in order to accurately complete the matrix. In this paper, we deal with matrices that are not necessarily low rank themselves, but rather they contain low-rank submatrices. We propose Targeted, which is a general framework for completing such matrices. In this framework, we first extract the low-rank submatrices and then apply a matrix-completion algorithm to these low-rank submatrices as well as the remainder matrix separately. Although for the completion itself we use state-of-the-art completion methods, our results demonstrate that Targeted achieves significantly smaller reconstruction errors than other classical matrix-completion methods. One of the key technical contributions of the paper lies in the identification of the low-rank submatrices from the input partially-observed matrices.Comment: Proceedings of the 2017 SIAM International Conference on Data Mining (SDM
    • …
    corecore