78 research outputs found

    An efficient probabilistic public-key cryptosystem over quadratic fields quotients

    Get PDF
    AbstractWe present a new probabilistic cryptosystem working in quadratic fields quotients. Computation in such objects can be done efficiently with Lucas sequences which help to design a fast system. The security of the scheme is based on the LUC problem and its semantic security on a new decisional problem. This system appears to be an alternative to schemes based on the RSA primitive and has a full computational cost smaller than the El Gamal EC cryptosystem

    A New Attack on Three Variants of the RSA Cryptosystem

    Get PDF
    International audienceIn 1995, Kuwakado, Koyama and Tsuruoka presented a new RSA-type scheme based on singular cubic curves y^2 ≡ x^3 + bx^2 (mod N) where N = pq is an RSA modulus. Then, in 2002, Elkamchouchi, Elshenawy and Shaban introduced an extension of the RSA scheme to the field of Gaussian integers using a modulus N = P Q where P and Q are Gaussian primes such that p = |P | and q = |Q| are ordinary primes. Later, in 2007, Castagnos's proposed a scheme over quadratic fields quotients with an RSA modulus N = pq. In the three schemes, the public exponent e is an integer satisfying the key equation ed − k^(p^2 − 1) (q^2 − 1) = 1. In this paper, we apply the continued fraction method to launch an attack on the three schemes when the private exponent d is sufficiently small. Our attack can be considered as an extension of the famous Wiener attack on RSA

    A public-key cryptosystem based on second order linear sequences

    Get PDF
    Based on Lucas functions, an improved version of the Diffie-Hellman distribution key scheme and to the ElGamal public key cryptosystem scheme are proposed, together with an implementation and computational cost. The security relies on the difficulty of factoring an RSA integer and on the difficulty of computing the discrete logarithm

    The zheng-seberry public key cryptosystem and signcryption

    Get PDF
    In 1993 Zheng-Seberry presented a public key cryptosystem that was considered efficient and secure in the sense of indistinguishability of encryptions (IND) against an adaptively chosen ciphertext adversary (CCA2). This thesis shows the Zheng-Seberry scheme is not secure as a CCA2 adversary can break the scheme in the sense of IND. In 1998 Cramer-Shoup presented a scheme that was secure against an IND-CCA2 adversary and whose proof relied only on standard assumptions. This thesis modifies this proof and applies it to a modified version of the El-Gamal scheme. This resulted in a provably secure scheme relying on the Random Oracle (RO) model, which is more efficient than the original Cramer-Shoup scheme. Although the RO model assumption is needed for security of this new El-Gamal variant, it only relies on it in a minimal way

    Homomorphic Encryption — Theory and Application

    Get PDF

    Computational methods in public key cryptology

    Get PDF

    Algebraic Tori in Cryptography

    Get PDF
    Communicating bits over a network is expensive. Therefore, cryptosystems that transmit as little data as possible are valuable. This thesis studies several cryptosystems that require significantly less bandwidth than conventional analogues. The systems we study, called torus-based cryptosystems, were analyzed by Karl Rubin and Alice Silverberg in 2003 [RS03]. They interpreted the XTR [LV00] and LUC [SL93] cryptosystems in terms of quotients of algebraic tori and birational parameterizations, and they also presented CEILIDH, a new torus-based cryptosystem. This thesis introduces the geometry of algebraic tori, uses it to explain the XTR, LUC, and CEILIDH cryptosystems, and presents torus-based extensions of van Dijk, Woodruff, et al. [vDW04, vDGP+05] that require even less bandwidth. In addition, a new algorithm of Granger and Vercauteren [GV05] that attacks the security of torus-based cryptosystems is presented. Finally, we list some open research problems

    Some applications of noncommutative groups and semigroups to information security

    Full text link
    We present evidence why the Burnside groups of exponent 3 could be a good candidate for a platform group for the HKKS semidirect product key exchange protocol. We also explore hashing with matrices over SL2(Fp), and compute bounds on the girth of the Cayley graph of the subgroup of SL2(Fp) for specific generators A, B. We demonstrate that even without optimization, these hashes have comparable performance to hashes in the SHA family

    Hard isogeny problems over RSA moduli and groups with infeasible inversion

    Get PDF
    We initiate the study of computational problems on elliptic curve isogeny graphs defined over RSA moduli. We conjecture that several variants of the neighbor-search problem over these graphs are hard, and provide a comprehensive list of cryptanalytic attempts on these problems. Moreover, based on the hardness of these problems, we provide a construction of groups with infeasible inversion, where the underlying groups are the ideal class groups of imaginary quadratic orders. Recall that in a group with infeasible inversion, computing the inverse of a group element is required to be hard, while performing the group operation is easy. Motivated by the potential cryptographic application of building a directed transitive signature scheme, the search for a group with infeasible inversion was initiated in the theses of Hohenberger and Molnar (2003). Later it was also shown to provide a broadcast encryption scheme by Irrer et al. (2004). However, to date the only case of a group with infeasible inversion is implied by the much stronger primitive of self-bilinear map constructed by Yamakawa et al. (2014) based on the hardness of factoring and indistinguishability obfuscation (iO). Our construction gives a candidate without using iO.Comment: Significant revision of the article previously titled "A Candidate Group with Infeasible Inversion" (arXiv:1810.00022v1). Cleared up the constructions by giving toy examples, added "The Parallelogram Attack" (Sec 5.3.2). 54 pages, 8 figure
    • …
    corecore