69 research outputs found

    Viterbi Accelerator for Embedded Processor Datapaths

    Get PDF
    We present a novel architecture for a lightweight Viterbi accelerator that can be tightly integrated inside an embedded processor. We investigate the accelerator’s impact on processor performance by using the EEMBC Viterbi benchmark and the in-house Viterbi Branch Metric kernel. Our evaluation based on the EEMBC benchmark shows that an accelerated 65-nm 2.7-ns processor datapath is 20% larger but 90% more cycle efficient than a datapath lacking the Viterbi accelerator, leading to an 87% overall energy reduction and a data throughput of 3.52 Mbit/s

    Reconfigurable architectures for beyond 3G wireless communication systems

    Get PDF

    Wilis: Architectural Modeling of Wireless Systems

    Get PDF
    The performance of a wireless system depends on the wireless channel as well as the algorithms used in the transceiver pipelines. Because physical phenomena affect transceiver pipelines in difficult to predict ways, detailed simulation of the entire transceiver system is needed to evaluate even a single processing block. Further, some protocol validations require simulation of rare events (say, 1 bit error in 109 bits), which means the protocol must simulate for a long enough time for such events to materialize. This requirement coupled with the heavy computation typical of most physical-layer processing, rules out pure software solutions. In this paper we describe WiLIS, an FPGA-based hybrid hardware-software system designed to facilitate the development of wireless protocols. We then use WiLIS to evaluate several microarchitectures for measuring very low bit-error rates (BER). We demonstrate, for the first time, that the recently proposed SoftPHY can be implemented efficiently in hardware

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Design and Implementation of Belief Propagation Symbol Detectors for Wireless Intersymbol Interference Channels

    Get PDF
    In modern wireless communication systems, intersymbol interference (ISI) introduced by frequency selective fading is one of the major impairments to reliable data communication. In ISI channels, the receiver observes the superposition of multiple delayed reflections of the transmitted signal, which will result errors in the decision device. As the data rate increases, the effect of ISI becomes severe. To combat ISI, equalization is usually required for symbol detectors. The optimal maximum-likelihood sequence estimation (MLSE) based on the Viterbi algorithm (VA) may be used to estimate the transmitted sequence in the presence of the ISI. However, the computational complexity of the MLSE increases exponentially with the length of the channel impulse response (CIR). Even in channels which do not exhibit significant time dispersion, the length of the CIR will effectively increase as the sampling rate goes higher. Thus the optimal MLSE is impractical to implement in the majority of practical wireless applications. This dissertation is devoted to exploring practically implementable symbol detectors with near-optimal performance in wireless ISI channels. Particularly, we focus on the design and implementation of an iterative detector based on the belief propagation (BP) algorithm. The advantage of the BP detector is that its complexity is solely dependent on the number of nonzero coefficients in the CIR, instead of the length of the CIR. We also extend the work of BP detector design for various wireless applications. Firstly, we present a partial response BP (PRBP) symbol detector with near-optimal performance for channels which have long spanning durations but sparse multipath structure. We implement the architecture by cascading an adaptive linear equalizer (LE) with a BP detector. The channel is first partially equalized by the LE to a target impulse response (TIR) with only a few nonzero coefficients remaining. The residual ISI is then canceled by a more sophisticated BP detector. With the cascaded LE-BP structure, the symbol detector is capable to achieve a near-optimal error rate performance with acceptable implementation complexity. Moreover, we present a pipeline high-throughput implementation of the detector for channel length 30 with quadrature phase-shift keying (QPSK) modulation. The detector can achieve a maximum throughput of 206 Mb/s with an estimated core area of 3.162 mm^{2} using 90-nm technology node. At a target frequency of 515 MHz, the dynamic power is about 1.096 W. Secondly, we investigate the performance of aforementioned PRBP detector under a more generic 3G channel rather than the sparse channel. Another suboptimal partial response maximum-likelihood (PRML) detector is considered for comparison. Similar to the PRBP detector, the PRML detector also employs a hybrid two-stage scheme, in order to allow a tradeoff between performance and complexity. In simulations, we consider a slow fading environment and use the ITU-R 3G channel models. From the numerical results, it is shown that in frequency-selective fading wireless channels, the PRBP detector provides superior performance over both the traditional minimum mean squared error linear equalizer (MMSE-LE) and the PRML detector. Due to the effect of colored noise, the PRML detector in fading wireless channels is not as effective as it is in magnetic recording applications. Thirdly, we extend our work to accommodate the application of Advanced Television Systems Committee (ATSC) digital television (DTV) systems. In order to reduce error propagation caused by the traditional decision feedback equalizer (DFE) in DTV receiver, we present an adaptive decision feedback sparsening filter BP (DFSF-BP) detector, which is another form of PRBP detector. Different from the aforementioned LE-BP structure, in the DFSF-BP scheme, the BP detector is followed by a nonlinear filter called DFSF as the partial response equalizer. In the first stage, the DFSF employs a modified feedback filter which leaves the strongest post-cursor ISI taps uncorrected. As a result, a long ISI channel is equalized to a sparse channel having only a small number of nonzero taps. In the second stage, the BP detector is applied to mitigate the residual ISI. Since the channel is typically time-varying and suffers from Doppler fading, the DFSF is adapted using the least mean square (LMS) algorithm, such that the amplitude and the locations of the nonzero taps of the equalized sparse channel appear to be fixed. As such, the channel appears to be static during the second stage of equalization which consists of the BP detector. Simulation results demonstrate that the proposed scheme outperforms the traditional DFE in symbol error rate, under both static channels and dynamic ATSC channels. Finally, we study the symbol detector design for cooperative communications, which have attracted a lot of attention recently for its ability to exploit increased spatial diversity available at distributed antennas on other nodes. A system framework employing non-orthogonal amplify-and-forward half-duplex relays through ISI channels is developed. Based on the system model, we first design and implement an optimal maximum-likelihood detector based on the Viterbi algorithm. As the relay period increases, the effective CIR between the source and the destination becomes long and sparse, which makes the optimal detector impractical to implement. In order to achieve a balance between the computational complexity and performance, several sub-optimal detectors are proposed. We first present a multitrellis Viterbi algorithm (MVA) based detector which decomposes the original trellis into multiple parallel irregular sub-trellises by investigating the dependencies between the received symbols. Although MVA provides near-optimal performance, it is not straightforward to decompose the trellis for arbitrary ISI channels. Next, the decision feedback sequence estimation (DFSE) based detector and BP-based detector are proposed for cooperative ISI channels. Traditionally these two detectors are used with fixed, static channels. In our model, however, the effective channel is periodically time-varying, even when the component channels themselves are static. Consequently, we modify these two detector to account for cooperative ISI channels. Through simulations in frequency selective fading channels, we demonstrate the uncoded performance of the DFSE detector and the BP detector when compared to the optimal MLSE detector. In addition to quantifying the performance of these detectors, we also include an analysis of the implementation complexity as well as a discussion on complexity/performance tradeoffs

    Integrating spinal codes into wireless systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 85-88).Rateless spinal codes [47] promise performance gains for future wireless systems. These gains can be realized in the form of higher data rates, longer operational ranges, reduced power consumption, and greater reliability. This is due in part to the manner in which rateless codes exploit the instantaneous characteristics of the wireless medium, including unpredictable fluctuations. By contrast, traditional rated codes can accommodate variability only by making overly conservative assumptions. Before spinal codes reach practical deployment, they must be integrated into the networking stacks of real devices, and they must be instantiated in compact, ecient silicon. This thesis addresses fundamental challenges in each of these two areas, covering a body of work reported in previous publications by this author and others [27, 26]. On the networking side, this thesis explores a rateless analogue of link-layer retransmission schemes, capturing the idea of rate adaptation and generalizing the approach of hybrid ARQ/incremental redundancy systems such as LTE [29]. On the silicon side, this thesis presents the development of a VLSI architecture that exploits the inherent parallelism of the spinal decoder.by Peter Anthony Iannucci.S.M

    Statistical Guarantees of Performance for MIMO Designs

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryUILU-ENG-09-221

    CRC-Aided High-Rate Convolutional Codes With Short Blocklengths for List Decoding

    Full text link
    Recently, rate-1/n zero-terminated (ZT) and tail-biting (TB) convolutional codes (CCs) with cyclic redundancy check (CRC)-aided list decoding have been shown to closely approach the random-coding union (RCU) bound for short blocklengths. This paper designs CRC polynomials for rate- (n-1)/n ZT and TB CCs with short blocklengths. This paper considers both standard rate-(n-1)/n CC polynomials and rate- (n-1)/n designs resulting from puncturing a rate-1/2 code. The CRC polynomials are chosen to maximize the minimum distance d_min and minimize the number of nearest neighbors A_(d_min) . For the standard rate-(n-1)/n codes, utilization of the dual trellis proposed by Yamada et al. lowers the complexity of CRC-aided serial list Viterbi decoding (SLVD). CRC-aided SLVD of the TBCCs closely approaches the RCU bound at a blocklength of 128. This paper compares the FER performance (gap to the RCU bound) and complexity of the CRC-aided standard and punctured ZTCCs and TBCCs. This paper also explores the complexity-performance trade-off for three TBCC decoders: a single-trellis approach, a multi-trellis approach, and a modified single-trellis approach with pre-processing using the wrap around Viterbi algorithm.Comment: arXiv admin note: substantial text overlap with arXiv:2111.0792

    Highly-configurable FPGA-based platform for wireless network research

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 155-164).Over the past few years, researchers have developed many cross-layer wireless protocols to improve the performance of wireless networks. Experimental evaluations of these protocols require both high-speed simulations and real-time on-air experimentations. Unfortunately, radios implemented in pure software are usually inadequate for either because they are typically two to three orders of magnitude slower than commodity hardware. FPGA-based platforms provide much better speeds but are quite difficult to modify because of the way high-speed designs are typically implemented by trading modularity for performance. Experimenting with cross-layer protocols requires a flexible way to convey information beyond the data itself from lower to higher layers, and a way for higher layers to configure lower layers dynamically and within some latency bounds. One also needs to be able to modify a layer's processing pipeline without triggering a cascade of changes. In this thesis, we discuss an alternative approach to implement a high-performance yet configurable radio design on an FPGA platform that satisfies these requirements. We propose that all modules in the design must possess two important design properties, namely latency-insensitivity and datadriven control, which facilitate modular refinements. We have developed Airblue, an FPGA-based radio, that has all these properties and runs at speeds comparable to commodity hardware. Our baseline design is 802.11g compliant and is able to achieve reliable communication for bit rates up to 24 Mbps. We show in the thesis that we can implement SoftRate, a cross-layer rate adaptation protocol, by modifying only 5.6% of the source code (967 lines). We also show that our modular design approach allows us to abstract the details of the FPGA platform from the main design, thus making the design portable across multiple FPGA platforms. By taking advantage of this virtualization capability, we were able to turn Airblue into a high-speed hardware software co-simulator with simulation speed beyond 20 Mbps.by Man Cheuk Ng.Ph.D

    ERROR CORRECTION CODE-BASED EMBEDDING IN ADAPTIVE RATE WIRELESS COMMUNICATION SYSTEMS

    Get PDF
    In this dissertation, we investigated the methods for development of embedded channels within error correction mechanisms utilized to support adaptive rate communication systems. We developed an error correction code-based embedding scheme suitable for application in modern wireless data communication standards. We specifically implemented the scheme for both low-density parity check block codes and binary convolutional codes. While error correction code-based information hiding has been previously presented in literature, we sought to take advantage of the fact that these wireless systems have the ability to change their modulation and coding rates in response to changing channel conditions. We utilized this functionality to incorporate knowledge of the channel state into the scheme, which led to an increase in embedding capacity. We conducted extensive simulations to establish the performance of our embedding methodologies. Results from these simulations enabled the development of models to characterize the behavior of the embedded channels and identify sources of distortion in the underlying communication system. Finally, we developed expressions to define limitations on the capacity of these channels subject to a variety of constraints, including the selected modulation type and coding rate of the communication system, the current channel state, and the specific embedding implementation.Commander, United States NavyApproved for public release; distribution is unlimited
    • …
    corecore