5 research outputs found

    Wo bin ich? Beiträge zum Lokalisierungsproblem mobiler Roboter

    Get PDF
    Self-localization addresses the problem of estimating the pose of mobile robots with respect to a certain coordinate system of their workspace. It is needed for various mobile robot applications like material handling in industry, disaster zone operations, vacuum cleaning, or even the exploration of foreign planets. Thus, self-localization is a very essential capability. This problem has received considerable attention over the last decades. It can be decomposed into localization on a global and local level. Global techniques are able to localize the robot without any prior knowledge about its pose with respect to an a priori known map. In contrast, local techniques aim to correct so-called odometry errors occurring during robot motion. In this thesis, the global localization problem for mobile robots is mainly addressed. The proposed method is based on matching an incremental local map to an a priori known global map. This approach is very time and memory efficient and robust to structural ambiguity as well as with respect to the occurrence of dynamic obstacles in non-static environments. The algorithm consists of several components like ego motion estimation or global point cloud matching. Nowadays most computers feature multi-core processors and thus map matching is performed by applying a parallelized variant of the Random Sample Matching (pRANSAM) approach originally devised for solving the 3D-puzzle problem. pRANSAM provides a set of hypotheses representing alleged robot poses. Techniques are discussed to postprocess the hypotheses, e.g. to decide when the robot pose is determined with a sufficient accuracy. Furthermore, runtime aspects are considered in order to facilitate localization in real-time. Finally, experimental results demonstrate the robustness of the method proposed in this thesis.Das Lokalisierungsproblem mobiler Roboter beschreibt die Aufgabe, deren Pose bezüglich eines gegebenen Weltkoordinatensystems zu bestimmen. Die Fähigkeit zur Selbstlokalisierung wird in vielen Anwendungsbereichen mobiler Roboter benötigt, wie etwa bei dem Materialtransport in der industriellen Fertigung, bei Einsätzen in Katastrophengebieten oder sogar bei der Exploration fremder Planeten. Eine Unterteilung existierender Verfahren zur Lösung des genannten Problems erfolgt je nachdem ob eine Lokalisierung auf lokaler oder auf globaler Ebene stattfindet. Globale Lokalisierungsalgorithmen bestimmen die Pose des Roboters bezüglich eines Weltkoordinatensystems ohne jegliches Vorwissen, wohingegen bei lokalen Verfahren eine grobe Schätzung der Pose vorliegt, z.B. durch gegebene Odometriedaten des Roboters. Im Rahmen dieser Dissertation wird ein neuer Ansatz zur Lösung des globalen Lokalisierungsproblems vorgestellt. Die grundlegende Idee ist, eine lokale Karte und eine globale Karte in Übereinstimmung zu bringen. Der beschriebene Ansatz ist äußerst robust sowohl gegenüber Mehrdeutigkeiten der Roboterpose als auch dem Auftreten dynamischer Hindernisse in nicht-statischen Umgebungen. Der Algorithmus besteht hauptsächlich aus drei Komponenten: Einem Scanmatcher zur Generierung der lokalen Karte, einer Methode zum matchen von lokaler und globaler Karte und einer Instanz, welche entscheidet, wann der Roboter mit hinreichender Sicherheit korrekt lokalisiert ist. Das Matching von lokaler und globaler Karte wird dabei von einer parallelisierten Variante des Random Sample Matching (pRANSAM) durchgeführt, welche eine Menge von Posenhypothesen liefert. Diese Hypothesen werden in einem weiteren Schritt analysiert, um bei hinreichender Eindeutigkeit die korrekte Roboterpose zu bestimmen. Umfangreiche Experimente belegen die Zuverlässigkeit und Genauigkeit des in dieser Dissertation vorgestellten Verfahrens

    Griff-in-die-Kiste - Neue Ansätze für ein klassisches Problem

    Get PDF
    The automation of handling tasks has been an important scientific topic since the development of the first industrial robots. The first step in the chain of scientific challenges to be solved is the automatic grasping of objects. One of the most famous examples in this context is the well known ”bin-picking” problem. To pick up objects, scrambled in a box is an easy task for humans, but its automation is very complex. Besides the localization of the object, meaning the estimation of the object’s pose (orientation and position), it has to be ensured that a collision free path can be found to safely grasp the objects. For over 50 years, researchers have published approaches towards generic solutions to this problem, but unfortunately no industry applicable, generic system has been developed yet. In this thesis, three different approaches to solve the bin-picking problem are described. More precisely, different solutions to the pose estimation problem are introduced, each paired with additional functionalities to complete it for application in a bin-picking station. It is described, how modern sensors can be used for efficient bin-picking as well as how classic sensor concepts can be applied for novel bin-picking techniques. Three complete systems are described and compared. First, 3D point clouds, generated using a laser scanner, are used as basis. Employing the known Random Sample Matching algorithm and modifications of it, paired with a very efficient depth map based collision avoidance mechanism results in a very robust bin-picking approach. In the second approach, all computations are done on depth maps. This allows the use of 2D image analysis techniques to fulfill the tasks and results in real time data analysis. Combined with force/torque and acceleration sensors, a near time optimal bin-picking system emerges. As a third option, surface normal maps are employed as a basis for pose estimation. In contrast to known approaches, the normal maps are not used for 3D data computation but directly for the object localization problem. This enables the application of a new class of sensors for bin-picking. All three methods are compared and advantages and disadvantages of each approach are discussed.Das automatisierte Handling von Objekten ist seit Entwicklung der ersten Roboter ein Forschungsthema. Der erste Schritt in diese Richtung ist das automatische Greifen von Objekten. Eines der berühmtesten Probleme in diesem Zusammenhang ist der "Griff-in-die-Kiste", oder "Bin-Picking". Frei angeordnete Objekte (Schüttgut) aus einer Kiste zu entnehmen stellt für Menschen keine schwierige Aufgabe dar, ist jedoch extrem komplex zu automatisieren. Neben der Objektlokalisierung, also dem Bestimmen der Position und der Orientierung, der Pose, des Objekts muss hier auch gewährleistet werden, dass eine kollisionsfreie Interaktion des Roboters mit dem Objekt möglich ist. Seit mehr als 50 Jahren veröffentlichen Forscher Ansätze, um einer generischen Lösung dieses Problems näher zu kommen. Dennoch ist Bin-Picking auch heute noch nicht vollständig gelöst. Diese Arbeit beschreibt daher drei neue, unterschiedliche Konzepte um das Bin-Picking-Problem zu lösen. Genauer gesagt werden Verfahren vorgestellt, die auf Basis unterschiedlicher Daten Objekte lokalisieren können. Die Arbeit beschreibt, wie moderne optische Sensoren effizient für das Bin-Picking eingesetzt werden können, aber auch, dass klassische Sensorkonzepte neuartige und effiziente Lösungen ermöglichen. Drei Systeme werden beschrieben und verglichen. Zunächst werden per 3D-Scanner aufgenommene Punktwolken als Basis genutzt und mittels Random Sample Matching Objektposen extrahiert. Die Kollisionsvermeidungsstrategie basiert auf Tiefenbildern, was die Berechnung sehr effizient macht. Als zweites wird die Lokalisierung direkt auf Tiefenbildern gerechnet. Dies ermöglicht den direkten Einsatz von 2d Bildverarbeitungsmethoden, was eine Greifposenbestimmung in Echtzeit ermöglicht. Verbunden mit Kraft-Momentensensorik entsteht so ein nahezu zeitoptimales Bin-Picking-System. Als dritte Möglichkeit werden Oberflächennormalenkarten als Basis zur Objektlokalisierung verwendet. Im Gegensatz zu herkömmlichen Ansätzen aus der Literatur werden diese Karten nicht zu 3d Daten umgerechnet sondern direkt zur Posenschätzung genutzt. Dies ermöglicht den Einsatz einer Klasse von Sensoren zum Bin-Picking die bisher nur in anderen Gebieten genutzt werden konnte. Alle drei Methoden werden miteinander verglichen und Vor- sowie Nachteile beleuchtet

    Baseball and Antitrust: The Legislative History of the Curt Flood Act of 1998

    Get PDF
    https://scholarship.law.nd.edu/law_books/1185/thumbnail.jp

    Baseball and Antitrust: The Legislative History of the Curt Flood Act of 1998

    Get PDF
    https://scholarship.law.nd.edu/law_books/1185/thumbnail.jp
    corecore