7,015 research outputs found

    A comparison between numerical solutions to fractional differential equations: Adams-type predictor-corrector and multi-step generalized differential transform method

    Get PDF
    In this note, two numerical methods of solving fractional differential equations (FDEs) are briefly described, namely predictor-corrector approach of Adams-Bashforth-Moulton type and multi-step generalized differential transform method (MSGDTM), and then a demonstrating example is given to compare the results of the methods. It is shown that the MSGDTM, which is an enhancement of the generalized differential transform method, neglects the effect of non-local structure of fractional differentiation operators and fails to accurately solve the FDEs over large domains.Comment: 12 pages, 2 figure

    An implementation of radiative transfer in the cosmological simulation code GADGET

    Full text link
    We present a novel numerical implementation of radiative transfer in the cosmological smoothed particle hydrodynamics (SPH) simulation code {\small GADGET}. It is based on a fast, robust and photon-conserving integration scheme where the radiation transport problem is approximated in terms of moments of the transfer equation and by using a variable Eddington tensor as a closure relation, following the `OTVET'-suggestion of Gnedin & Abel. We derive a suitable anisotropic diffusion operator for use in the SPH discretization of the local photon transport, and we combine this with an implicit solver that guarantees robustness and photon conservation. This entails a matrix inversion problem of a huge, sparsely populated matrix that is distributed in memory in our parallel code. We solve this task iteratively with a conjugate gradient scheme. Finally, to model photon sink processes we consider ionisation and recombination processes of hydrogen, which is represented with a chemical network that is evolved with an implicit time integration scheme. We present several tests of our implementation, including single and multiple sources in static uniform density fields with and without temperature evolution, shadowing by a dense clump, and multiple sources in a static cosmological density field. All tests agree quite well with analytical computations or with predictions from other radiative transfer codes, except for shadowing. However, unlike most other radiative transfer codes presently in use for studying reionisation, our new method can be used on-the-fly during dynamical cosmological simulation, allowing simultaneous treatments of galaxy formation and the reionisation process of the Universe.Comment: 21 pages, 17 figures, published in MNRA
    • …
    corecore