579 research outputs found

    Automatic Video Quality Measurement System And Method Based On Spatial-temporal Coherence Metrics

    Get PDF
    An automatic video quality (AVQ) metric system for evaluating the quality of processed video and deriving an estimate of a subjectively determined function called Mean Time Between Failures (MTBF). The AVQ system has a blockiness metric, a streakiness metric, and a blurriness metric. The blockiness metric can be used to measure compression artifacts in processed video. The streakiness metric can be used to measure network artifacts in the processed video. The blurriness metric can measure the degradation (i.e., blurriness) of the images in the processed video to detect compression artifacts.Georgia Tech Research Corporatio

    Video Quality Metrics

    Get PDF

    Hybrid Neural Rendering for Large-Scale Scenes with Motion Blur

    Full text link
    Rendering novel view images is highly desirable for many applications. Despite recent progress, it remains challenging to render high-fidelity and view-consistent novel views of large-scale scenes from in-the-wild images with inevitable artifacts (e.g., motion blur). To this end, we develop a hybrid neural rendering model that makes image-based representation and neural 3D representation join forces to render high-quality, view-consistent images. Besides, images captured in the wild inevitably contain artifacts, such as motion blur, which deteriorates the quality of rendered images. Accordingly, we propose strategies to simulate blur effects on the rendered images to mitigate the negative influence of blurriness images and reduce their importance during training based on precomputed quality-aware weights. Extensive experiments on real and synthetic data demonstrate our model surpasses state-of-the-art point-based methods for novel view synthesis. The code is available at https://daipengwa.github.io/Hybrid-Rendering-ProjectPage

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms
    • …
    corecore