2,589 research outputs found

    A textural deep neural network architecture for mechanical failure analysis

    Get PDF
    Nowadays, many classification problems are approached with deep learning architectures, and the results are outstanding compared to the ones obtained with traditional computer vision approaches. However, when it comes to texture, deep learning analysis has not had the same success as for other tasks. The texture is an inherent characteristic of objects, and it is the main descriptor for many applications in the computer vision field, however due to its stochastic appearance, it is difficult to obtain a mathematical model for it. According to the state of the art, deep learning techniques have some limitations when it comes to learning textural features; and, to classify texture using deep neural networks, it is essential to integrate them with handcrafted features or develop an architecture that resembles these features. By solving this problem, it would be possible to contribute in different applications, such as fractographic analysis. To achieve the best performance in any industry, it is important that the companies have a failure analysis, able to show the flaws’ causes, offer applications and solutions and generate alternatives that allow the customers to obtain more efficient components and productions. The failure of an industrial element has consequences such as significant economic losses, and in some cases, even human losses. With this analysis it is possible to examine the background of the damaged piece in order to find how and why it fails, and to help prevent future failures, in order to implement safer conditions. The visual inspection is the basis for the generation of every fractographic process in failure analysis and it is the main tool for fracture classification. This process is usually done by non-expert personnel on the topic, and normally they do not have the knowledge or experience required for the job, which, without question, increases the possibilities of generating a wrong classification and negatives results in the whole process. This research focuses on the development of a visual computer system that implements a textural deep learning architecture. Several approaches were taken into account, including combining deep learning techniques with traditional handcrafted features, and the development of a new architecture based on the wavelet transform and the multiresolution analysis. The algorithm was test on textural benchmark datasets and on the classification of mechanical fractures with particular texture and marks on surfaces of crystalline materials.Actualmente, diferentes problemas computacionales utilizan arquitecturas de aprendizaje profundo como enfoque principal. Obteniendo resultados sobresalientes comparados con los obtenidos por métodos tradicionales de visión por computador. Sin embargo, cuando se trata de texturas, los análisis de textura no han tenido el mismo éxito que para otras tareas. La textura es una característica inherente de los objetos y es el descriptor principal para diferentes aplicaciones en el campo de la visión por computador. Debido a su apariencia estocástica difícilmente se puede obtener un modelo matemático para describirla. De acuerdo con el estado-del-arte, las técnicas de aprendizaje profundo presentan limitaciones cuando se trata de aprender características de textura. Para clasificarlas, se hace esencial combinarlas con características tradicionales o desarrollar arquitecturas de aprendizaje profundo que reseemblen estas características. Al solucionar este problema es posible contribuir a diferentes aplicaciones como el análisis fractográfico. Para obtener el mejor desempeño en cualquier tipo de industria es importante obtener análisis fractográfico, el cual permite determinar las causas de los diferentes fallos y generar las alternativas para obtener componentes más eficientes. La falla de un elemento mecánico tiene consecuencias importantes tal como pérdidas económicas y en algunos casos incluso pérdidas humanas. Con estos análisis es posible examinar la historia de las piezas dañadas con el fin de entender porqué y cómo se dio el fallo en primer lugar y la forma de prevenirla. De esta forma implementar condiciones más seguras. La inspección visual es la base para la generación de todo proceso fractográfico en el análisis de falla y constituye la herramienta principal para la clasificación de fracturas. El proceso, usualmente, es realizado por personal no-experto en el tema, que normalmente, no cuenta con el conocimiento o experiencia necesarios requeridos para el trabajo, lo que sin duda incrementa las posibilidades de generar una clasificación errónea y, por lo tanto, obtener resultados negativos en todo el proceso. Esta investigación se centra en el desarrollo de un sistema visual de visión por computado que implementa una arquitectura de aprendizaje profundo enfocada en el análisis de textura. Diferentes enfoques fueron tomados en cuenta, incluyendo la combinación de técnicas de aprendizaje profundo con características tradicionales y el desarrollo de una nueva arquitectura basada en la transformada wavelet y el análisis multiresolución. El algorítmo fue probado en bases de datos de referencia en textura y en la clasificación de fracturas mecánicas en materiales cristalinos, las cuales presentan texturas y marcas características dependiendo del tipo de fallo generado sobre la pieza.Fundación CEIBADoctorad

    Generalized Completed Local Binary Patterns for Time-Efficient Steel Surface Defect Classification

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted ncomponent of this work in other works.Efficient defect classification is one of the most important preconditions to achieve online quality inspection for hot-rolled strip steels. It is extremely challenging owing to various defect appearances, large intraclass variation, ambiguous interclass distance, and unstable gray values. In this paper, a generalized completed local binary patterns (GCLBP) framework is proposed. Two variants of improved completed local binary patterns (ICLBP) and improved completed noise-invariant local-structure patterns (ICNLP) under the GCLBP framework are developed for steel surface defect classification. Different from conventional local binary patterns variants, descriptive information hidden in nonuniform patterns is innovatively excavated for the better defect representation. This paper focuses on the following aspects. First, a lightweight searching algorithm is established for exploiting the dominant nonuniform patterns (DNUPs). Second, a hybrid pattern code mapping mechanism is proposed to encode all the uniform patterns and DNUPs. Third, feature extraction is carried out under the GCLBP framework. Finally, histogram matching is efficiently accomplished by simple nearest-neighbor classifier. The classification accuracy and time efficiency are verified on a widely recognized texture database (Outex) and a real-world steel surface defect database [Northeastern University (NEU)]. The experimental results promise that the proposed method can be widely applied in online automatic optical inspection instruments for hot-rolled strip steel.Peer reviewe

    Convolutional Neural Network on Three Orthogonal Planes for Dynamic Texture Classification

    Get PDF
    Dynamic Textures (DTs) are sequences of images of moving scenes that exhibit certain stationarity properties in time such as smoke, vegetation and fire. The analysis of DT is important for recognition, segmentation, synthesis or retrieval for a range of applications including surveillance, medical imaging and remote sensing. Deep learning methods have shown impressive results and are now the new state of the art for a wide range of computer vision tasks including image and video recognition and segmentation. In particular, Convolutional Neural Networks (CNNs) have recently proven to be well suited for texture analysis with a design similar to a filter bank approach. In this paper, we develop a new approach to DT analysis based on a CNN method applied on three orthogonal planes x y , xt and y t . We train CNNs on spatial frames and temporal slices extracted from the DT sequences and combine their outputs to obtain a competitive DT classifier. Our results on a wide range of commonly used DT classification benchmark datasets prove the robustness of our approach. Significant improvement of the state of the art is shown on the larger datasets.Comment: 19 pages, 10 figure

    A Convolutional Neural Network model based on Neutrosophy for Noisy Speech Recognition

    Full text link
    Convolutional neural networks are sensitive to unknown noisy condition in the test phase and so their performance degrades for the noisy data classification task including noisy speech recognition. In this research, a new convolutional neural network (CNN) model with data uncertainty handling; referred as NCNN (Neutrosophic Convolutional Neural Network); is proposed for classification task. Here, speech signals are used as input data and their noise is modeled as uncertainty. In this task, using speech spectrogram, a definition of uncertainty is proposed in neutrosophic (NS) domain. Uncertainty is computed for each Time-frequency point of speech spectrogram as like a pixel. Therefore, uncertainty matrix with the same size of spectrogram is created in NS domain. In the next step, a two parallel paths CNN classification model is proposed. Speech spectrogram is used as input of the first path and uncertainty matrix for the second path. The outputs of two paths are combined to compute the final output of the classifier. To show the effectiveness of the proposed method, it has been compared with conventional CNN on the isolated words of Aurora2 dataset. The proposed method achieves the average accuracy of 85.96 in noisy train data. It is more robust against Car, Airport and Subway noises with accuracies 90, 88 and 81 in test sets A, B and C, respectively. Results show that the proposed method outperforms conventional CNN with the improvement of 6, 5 and 2 percentage in test set A, test set B and test sets C, respectively. It means that the proposed method is more robust against noisy data and handle these data effectively.Comment: International conference on Pattern Recognition and Image Analysis (IPRIA 2019

    The Incremental Multiresolution Matrix Factorization Algorithm

    Full text link
    Multiresolution analysis and matrix factorization are foundational tools in computer vision. In this work, we study the interface between these two distinct topics and obtain techniques to uncover hierarchical block structure in symmetric matrices -- an important aspect in the success of many vision problems. Our new algorithm, the incremental multiresolution matrix factorization, uncovers such structure one feature at a time, and hence scales well to large matrices. We describe how this multiscale analysis goes much farther than what a direct global factorization of the data can identify. We evaluate the efficacy of the resulting factorizations for relative leveraging within regression tasks using medical imaging data. We also use the factorization on representations learned by popular deep networks, providing evidence of their ability to infer semantic relationships even when they are not explicitly trained to do so. We show that this algorithm can be used as an exploratory tool to improve the network architecture, and within numerous other settings in vision.Comment: Computer Vision and Pattern Recognition (CVPR) 2017, 10 page

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe
    corecore