84 research outputs found

    An efficient mixed integer programming model for pairing containers in inland transportation based on the assignment of orders

    Get PDF
    The inland transportation takes a significant portion of the total cost that arises from intermodal transportation. In addition, there are many parties (shipping lines, haulage companies, customers) who share this operation as well as many restrictions that increase the complexity of this problem and make it NP-hard. Therefore, it is important to create an efficient strategy to manage this process in a way to ensure all parties are satisfied. This paper investigates the pairing of containers/orders in drayage transportation from the perspective of delivering paired containers on 40-ft truck and/or individual containers on 20-ft truck, between a single port and a list of customer locations. An assignment mixed integer linear programming model is formulated, which solves the problem of how to combine orders in delivery to save the total transportation cost when orders with both single and multiple destinations exist. In opposition to the traditional models relying on the vehicle routing problem with simultaneous pickups and deliveries and time windows formulation, this model falls into the assignment problem category which is more efficient to solve on large size instances. Another merit for the proposed model is that it can be implemented on different variants of the container drayage problem: import only, import–inland and import–inland–export. Results show that in all cases the pairing of containers yields less cost compared to the individual delivery and decreases empty tours. The proposed model can be solved to optimality efficiently (within half hour) for over 300 orders

    A Systematic Literature Review Looking at Digitizing Container Harbors

    Get PDF
    This article presents a systematic literature on the use of information technology within the field of maritime shipping. First, the review scope, the search terms, the data sources, the search process, the inclusion and exclusion criteria, and the data extraction and analysis procedures are presented. The findings show that RFID is still reported to be in its infancy. Truck appointment system might only work in certain situations as truck drivers might not have a choice of when to pick up its container. There is no centralization of the operation. Creating a digital dashboard to display potential wait-time based on past days truck companies can better plan their day if they have the chance to do so. The benefits of such system are to offer real-time information to its users. Digitalization also allows for predictive analytics to take place this takes the process to another level.publishedVersio

    The one container drayage problem with soft time windows

    Get PDF
    Intermodal freight transport consists of using different modes of transport without changing the load unit. This results in a significant reduction in the time that goods spend at intermodal terminals, where transshipment takes place. Drayage refers to the transport of freight on trucks among intermodal terminals, depots, customers and suppliers. In spite of the fact that drayage only represents between 5 and 10 percent of total distance, it may amount up to more than 30 percent of the total costs. The aim of this work is to study drayage operations. First, an extensive literature review is undertaken. Since the intermodal transport chain can become more efficient by means of a proper organisation of the drayage movements, the optimization of the daily drayage problem has been identified as one of the main ways of reducing the drayage cost and improving intermodal operations. On this problem, the lack of a common benchmark has hindered reaching further conclusions from all the research carried out. Therefore, this paper proposes a common framework and presents a generalized formulation of the problem, which allows modeling most drayage policies, with the limitation of only considering one-container problems. Results show that flexible tasks in the repositioning of empty containers as well as soft time windows can reduce the operating costs and facilitate the management of drayage companies. This work may help consider adequate policies regarding drayage operations in intermodal terminals

    A column generation based decomposition and aggregation approach for combining orders in inland transportation of containers

    Get PDF
    A significant portion of the total cost of the intermodal transportation is generated from the inland transportation of containers. In this paper, we design a Mixed Integer Linear Programming (MILP) model for combining orders in the inland, haulage transportation of containers. The pickup and delivery process of both 20 and 40 foot containers from the terminals to the customer locations and vice versa are optimized using heterogeneous fleet consisting of both 20ft and 40ft trucks/chasses. Important operational constraints such as the time window at order receivers, the payload weight of containers and the regulation of the working hours are considered. Based on an assignment problem structure, this MILP solves efficiently to optimality for problems with up to 120 orders. To deal with larger instances, a decomposition and aggregation heuristic is designed. The basic idea of this approach is to decompose order locations geographically into fanshaped sub-areas based on the angle of the order location to the port baseline, and solve the sub problems using the proposed MILP model. To balance the fleet size amongst all subgroups, column generation is used to iteratively adjust the number of allocated trucks according to the shadow-price of each truck type. Based on decomposed solutions, orders that are "fully" combined with others are removed and an aggregation phase follows to enable wider combination choices across subgroups. The decomposition and aggregation solution process is tested to be both efficient and cost-saving

    Optimizing multiple truck trips in a cooperative environment through MILP and Game Theory

    Get PDF
    Today, the challenge of economy regarding freight transport is to generate flows of goods extremely fast, handling information in short times, optimizing decisions, and reducing the percentage of vehicles that circulate empty over the total amount of transportation means, with benefits to roads congestion and the environment, besides economy. Logistic operators need to pose attention on suitable planning methods in order to reduce their costs, fuel consumption and emissions, as well as to gain economy of scale. To ensure the maximum efficacy, planning should be also based on cooperation between the involved subjects. Collaboration in logistics is an effective approach for business to obtain a competitive edge. In a successful collaboration, parties involved from suppliers, customers, and even competitors perform a coordinated effort to realize the potential benefit of collaboration, including reduced costs, decreased lead times, and improved asset utilization and service level. In addition to these benefit, having a broader supply chain perspective enables firms to make better-informed decisions on strategic issues. The first aim of the present Thesis is to propose a planning approach based on mathematical programming techniques to improve the efficiency of road services of a single carrier combining multiple trips in a port environment (specifically, import, export and inland trips). In this way, in the same route, more than two transportation services can be realized with the same vehicle thus significantly reducing the number of total empty movements. Time windows constraints related to companies and terminal opening hours as well as to ship departures are considered in the problem formulation. Moreover, driving hours restrictions and trips deadlines are taken into account, together with goods compatibility for matching different trips. The second goal of the Thesis is to define innovative planning methods and optimization schemes of logistic networks in which several carriers are present and the decisional actors operate in a cooperative scenario in which they share a portion of their demand. The proposed approaches are characterized by the adoption both of Game Theory methods and of new original methods of profits distribution

    AIRO 2016. 46th Annual Conference of the Italian Operational Research Society. Emerging Advances in Logistics Systems Trieste, September 6-9, 2016 - Abstracts Book

    Get PDF
    The AIRO 2016 book of abstract collects the contributions from the conference participants. The AIRO 2016 Conference is a special occasion for the Italian Operations Research community, as AIRO annual conferences turn 46th edition in 2016. To reflect this special occasion, the Programme and Organizing Committee, chaired by Walter Ukovich, prepared a high quality Scientific Programme including the first initiative of AIRO Young, the new AIRO poster section that aims to promote the work of students, PhD students, and Postdocs with an interest in Operations Research. The Scientific Programme of the Conference offers a broad spectrum of contributions covering the variety of OR topics and research areas with an emphasis on “Emerging Advances in Logistics Systems”. The event aims at stimulating integration of existing methods and systems, fostering communication amongst different research groups, and laying the foundations for OR integrated research projects in the next decade. Distinct thematic sections follow the AIRO 2016 days starting by initial presentation of the objectives and features of the Conference. In addition three invited internationally known speakers will present Plenary Lectures, by Gianni Di Pillo, FrĂ©dĂ©ric Semet e Stefan Nickel, gathering AIRO 2016 participants together to offer key presentations on the latest advances and developments in OR’s research

    Container Hinterland Drayage - On the Simultaneous Transportation of Containers Having Different Sizes

    Get PDF
    In an intermodal transportation chain drayage is the term used for the movement by truck of cargo that is filled in a loading unit. The most important intermodal transportation chain is the intermodal container transportation, in which containers represent the loading unit for cargo. Cost effectiveness constitutes a general problem of drayage operations. A major cost driver within container transportation chains is the movement and repositioning of empty containers. The present thesis investigates the potential to reduce drayage costs. Two solution methodologies are developed for operating a fleet of trucks that transports containers of different sizes, which addresses a recent gap in research in seaport hinterland regions

    A two-stage stochastic inventory management model for an intermodal trucking company

    Get PDF
    Master of ScienceDepartment of Industrial & Manufacturing Systems EngineeringAshesh SinhaIntermodal transportation faces several challenges due to uncertainty in rail schedules and customer demand. However, this uncertainty is rarely considered for determining asset management at the Intermodal rail yards. Typically, each Intermodal rail yard requires certain inventory of chassis to serve the demand for either empty containers or loaded containers. It is crucial for any transportation firm to optimally allocate and move chassis between rail ramps to overcome random demand. This thesis develops a two stage stochastic optimization model to determine the optimal allocation and repositioning decisions for chassis and empty boxes across the rail yards to minimize costs and meet service levels. The first stage formulation contains the initial chassis allocation decisions which are independent from random parameters in the following time periods. The second stage formulation determines the empty boxes and chassis repositining decisions for subsequent time periods when the random demand is realized. This thesis applies the L-Shaped Method to efficiently solve this problem. Using numerical experiments, this thesis analyzes the impact of system parameters on the run time performance. The thesis also analyzes the impact of initial chassis inventory and demand patterns on the optimal decisions. We observe that the higher initial inventory or demand at one location than the other results in an increase in the required repositioning moves and expected cost. Conversely, the model is fairly robust to how inventory and demand values are distributed between resource types

    Concepts, Mechanisms, and Algorithms to Measure the Potential of Container Sharing in Seaport Hinterland Transportation

    Get PDF
    This thesis analyzes how trucking companies of a hinterland region can improve their routes if shipping companies allow the mutual exchange of their containers. In this case, trucking companies that are assigned by shipping companies cooperate by sharing information regarding which locations empty containers are currently stacked. These containers can then be integrated into a vehicle's route of any operating trucking company in the hinterland. The investigation aims at measuring the quantitative potential of the container sharing idea by means of problem settings illustrating realistic hinterland regions of a seaport. As a first step, the impact of street turns on the transportation costs of a trucking company should be measured. By forbidding or allowing the use of street turns for a single trucking company, the potential of the container sharing idea can be indicated, and the interrelation of empty container movements and transportation costs can be shown. As a further step, the benefit of exchanging empty containers between several trucking companies needs to be analyzed. In doing so, it is possible to investigate the potential and realistic limits of container sharing

    Container Terminal Management:Integrated Models and Large-Scale Optimization Algorithms

    Get PDF
    This thesis deals with models and methods for large scale optimization problems; in particular, we focus on decision problems arising in the context of seaport container terminals for the efficient management of terminal operations. Large-scale optimization problems are both difficult to handle and important in many concrete contexts. They usually originate from real world applications, such as telecommunication, transportation and logistics, and their combinatorial complexity often represents a major issue; therefore, optimization models are crucial to support the decision making process. In particular, column generation and branch-and-price schemes currently represent one of the most advanced and efficient exact optimization approaches to solve large scale combinatorial problems. However, the increasing size and complexity of practical problems arising in real-world applications motivates the design of new solution approaches able to tackle current optimization challenges. In this thesis, we address two complementary research streams where both methods and applications play an important role. On the one hand, we focus on the specific application of container terminals: we propose a new model for the integrated planning of operations and we provide a heuristic and an exact solution algorithm; the broader objective is to devise solution methods that can be generalized and extended to other applications and domains. On the other hand, we aim to develop new methods and algorithms for general large scale problems and, in this context, we investigate a new column generation framework that exploits the relationship between compact and extensive formulation. In particular, we focus on a class of split delivery vehicle routing problems that generalizes a large number of applications arising in the real world, such as transportation and logistics, including container terminal management. In the context of container terminals, we propose a model for the integrated planning of berth allocation and quay crane assignment: the two decision problems are usually solved hierarchically by terminal planners, whereas in the Tactical Berth Allocation Problem we optimize the two problems simultaneously. We firstly present a mixed integer programming formulation that is embedded into a two-level heuristic algorithm based on tabu search and mathematical programming techniques: our heuristic proves to be very efficient, providing good-quality solutions in a reasonable time. The problem is reformulated via Dantzig-Wolfe decomposition and solved via column generation: we propose an exact branch-and-price algorithm and our implementation, that includes state-of-the-art techniques for the master and the pricing problem, outperforms commercial solvers. Furthermore, the exact approach allows us to provide an interesting experimental comparison between hierarchical and integrated planning: computational tests confirm the added value of integration in terms of cost reduction and efficient use of resources. From a methodological point of view, this dissertation investigates a new column generation concept for difficult large scale optimization problems. In particular, we study a class of split delivery vehicle routing problems that generalizes some interesting features of Tactical Berth Allocation Problem, which are relevant also to other applications such as transportation, logistics and telecommunication. The problem, called Discrete Split Delivery Vehicle Routing Problem with Time Windows, presents two main modeling features: demand is discrete and delivered in discrete orders, opposite to the usual assumption of continuously splittable demand; the service time is dependent on the delivered quantity, opposite to the usual assumption of constant service time, regardless of the quantity. The problem is used to validate and test the new column generation approach studied in this thesis. The proposed framework, called Two-stage column generation, represents a novel contribution to recent advances in column generation: the basic idea is to simultaneously generate columns both for the compact and the extensive formulation. We propose to start solving the problem on a subset of compact formulation variables, we apply Dantzig-Wolfe decomposition and we solve the resulting master problem via column generation. At this point, profitable compact formulation variables are dynamically generated and added to the formulation according to reduced cost arguments, in the same spirit of standard column generation. The key point of our approach is that we evaluate the contribution of compact formulation variables with respect to the extensive formulation: indeed, we aim at adding compact formulation variables that are profitable for the master problem, regardless of the optimal solution of the linear relaxation of the compact formulation. We apply two-stage column generation to the Discrete Split Delivery Vehicle Routing Problem with Time Windows. Computational results show that our approach significantly reduces the number of generated columns to prove optimality of the root node. Furthermore, suboptimal compact formulation variables are detected correctly and a large number of variables is not taken into account during the solution process, thus reducing the size of the problem. However, the additional effort required by such a sophisticated approach makes the method competitive in terms of computational time only for instances of a certain difficulty. To conclude, two-stage column generation is a promising new approach and we believe that further research in this direction may contribute to solve more and more complex large scale optimization problems
    • 

    corecore