11,464 research outputs found

    Parallel dynamics and computational complexity of the Bak-Sneppen model

    Full text link
    The parallel computational complexity of the Bak-Sneppen evolution model is studied. It is shown that Bak-Sneppen histories can be generated by a massively parallel computer in a time that is polylogarithmic in the length of the history. In this parallel dynamics, histories are built up via a nested hierarchy of avalanches. Stated in another way, the main result is that the logical depth of producing a Bak-Sneppen history is exponentially less than the length of the history. This finding is surprising because the self-organized critical state of the Bak-Sneppen model has long range correlations in time and space that appear to imply that the dynamics is sequential and history dependent. The parallel dynamics for generating Bak-Sneppen histories is contrasted to standard Bak-Sneppen dynamics. Standard dynamics and an alternate method for generating histories, conditional dynamics, are both shown to be related to P-complete natural decision problems implying that they cannot be efficiently implemented in parallel.Comment: 37 pages, 12 figure

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    Identification and Rejuvenation of NBTI-Critical Logic Paths in Nanoscale Circuits

    Get PDF
    The Negative Bias Temperature Instability (NBTI) phenomenon is agreed to be one of the main reliability concerns in nanoscale circuits. It increases the threshold voltage of pMOS transistors, thus, slows down signal propagation along logic paths between flip-flops. NBTI may cause intermittent faults and, ultimately, the circuit’s permanent functional failures. In this paper, we propose an innovative NBTI mitigation approach by rejuvenating the nanoscale logic along NBTI-critical paths. The method is based on hierarchical identification of NBTI-critical paths and the generation of rejuvenation stimuli using an Evolutionary Algorithm. A new, fast, yet accurate model for computation of NBTI-induced delays at gate-level is developed. This model is based on intensive SPICE simulations of individual gates. The generated rejuvenation stimuli are used to drive those pMOS transistors to the recovery phase, which are the most critical for the NBTI-induced path delay. It is intended to apply the rejuvenation procedure to the circuit, as an execution overhead, periodically. Experimental results performed on a set of designs demonstrate reduction of NBTI-induced delays by up to two times with an execution overhead of 0.1 % or less. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics

    EffiTest: Efficient Delay Test and Statistical Prediction for Configuring Post-silicon Tunable Buffers

    Full text link
    At nanometer manufacturing technology nodes, process variations significantly affect circuit performance. To combat them, post- silicon clock tuning buffers can be deployed to balance timing bud- gets of critical paths for each individual chip after manufacturing. The challenge of this method is that path delays should be mea- sured for each chip to configure the tuning buffers properly. Current methods for this delay measurement rely on path-wise frequency stepping. This strategy, however, requires too much time from ex- pensive testers. In this paper, we propose an efficient delay test framework (EffiTest) to solve the post-silicon testing problem by aligning path delays using the already-existing tuning buffers in the circuit. In addition, we only test representative paths and the delays of other paths are estimated by statistical delay prediction. Exper- imental results demonstrate that the proposed method can reduce the number of frequency stepping iterations by more than 94% with only a slight yield loss.Comment: ACM/IEEE Design Automation Conference (DAC), June 201

    NBTI and leakage aware sleep transistor design for reliable and energy efficient power gating

    No full text
    In this paper we show that power gating techniques become more effective during their lifetime, since the aging of sleep transistors (STs) due to negative bias temperature instability (NBTI) drastically reduces leakage power. Based on this property, we propose an NBTI and leakage aware ST design method for reliable and energy efficient power gating. Through SPICE simulations, we show lifetime extension up to 19.9x and average leakage power reduction up to 14.4% compared to standard STs design approach without additional area overhead.Finally, when a maximum 10-year lifetime target is considered, we show that the proposed method allows multiple beneficial options compared to a standard STs design method: either to improve circuit operating frequency up to 9.53% or to reduce ST area overhead up to 18.4

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry
    • …
    corecore