10,536 research outputs found

    The determinants of value addition: a crtitical analysis of global software engineering industry in Sri Lanka

    Get PDF
    It was evident through the literature that the perceived value delivery of the global software engineering industry is low due to various facts. Therefore, this research concerns global software product companies in Sri Lanka to explore the software engineering methods and practices in increasing the value addition. The overall aim of the study is to identify the key determinants for value addition in the global software engineering industry and critically evaluate the impact of them for the software product companies to help maximise the value addition to ultimately assure the sustainability of the industry. An exploratory research approach was used initially since findings would emerge while the study unfolds. Mixed method was employed as the literature itself was inadequate to investigate the problem effectively to formulate the research framework. Twenty-three face-to-face online interviews were conducted with the subject matter experts covering all the disciplines from the targeted organisations which was combined with the literature findings as well as the outcomes of the market research outcomes conducted by both government and nongovernment institutes. Data from the interviews were analysed using NVivo 12. The findings of the existing literature were verified through the exploratory study and the outcomes were used to formulate the questionnaire for the public survey. 371 responses were considered after cleansing the total responses received for the data analysis through SPSS 21 with alpha level 0.05. Internal consistency test was done before the descriptive analysis. After assuring the reliability of the dataset, the correlation test, multiple regression test and analysis of variance (ANOVA) test were carried out to fulfil the requirements of meeting the research objectives. Five determinants for value addition were identified along with the key themes for each area. They are staffing, delivery process, use of tools, governance, and technology infrastructure. The cross-functional and self-organised teams built around the value streams, employing a properly interconnected software delivery process with the right governance in the delivery pipelines, selection of tools and providing the right infrastructure increases the value delivery. Moreover, the constraints for value addition are poor interconnection in the internal processes, rigid functional hierarchies, inaccurate selections and uses of tools, inflexible team arrangements and inadequate focus for the technology infrastructure. The findings add to the existing body of knowledge on increasing the value addition by employing effective processes, practices and tools and the impacts of inaccurate applications the same in the global software engineering industry

    Increased lifetime of Organic Photovoltaics (OPVs) and the impact of degradation, efficiency and costs in the LCOE of Emerging PVs

    Get PDF
    Emerging photovoltaic (PV) technologies such as organic photovoltaics (OPVs) and perovskites (PVKs) have the potential to disrupt the PV market due to their ease of fabrication (compatible with cheap roll-to-roll processing) and installation, as well as their significant efficiency improvements in recent years. However, rapid degradation is still an issue present in many emerging PVs, which must be addressed to enable their commercialisation. This thesis shows an OPV lifetime enhancing technique by adding the insulating polymer PMMA to the active layer, and a novel model for quantifying the impact of degradation (alongside efficiency and cost) upon levelized cost of energy (LCOE) in real world emerging PV installations. The effect of PMMA morphology on the success of a ternary strategy was investigated, leading to device design guidelines. It was found that either increasing the weight percent (wt%) or molecular weight (MW) of PMMA resulted in an increase in the volume of PMMA-rich islands, which provided the OPV protection against water and oxygen ingress. It was also found that adding PMMA can be effective in enhancing the lifetime of different active material combinations, although not to the same extent, and that processing additives can have a negative impact in the devices lifetime. A novel model was developed taking into account realistic degradation profile sourced from a literature review of state-of-the-art OPV and PVK devices. It was found that optimal strategies to improve LCOE depend on the present characteristics of a device, and that panels with a good balance of efficiency and degradation were better than panels with higher efficiency but higher degradation as well. Further, it was found that low-cost locations were more favoured from reductions in the degradation rate and module cost, whilst high-cost locations were more benefited from improvements in initial efficiency, lower discount rates and reductions in install costs

    The Adirondack Chronology

    Get PDF
    The Adirondack Chronology is intended to be a useful resource for researchers and others interested in the Adirondacks and Adirondack history.https://digitalworks.union.edu/arlpublications/1000/thumbnail.jp

    Examining the Impact of Personal Social Media Use at Work on Workplace Outcomes

    Get PDF
    A noticable shift is underway in today’s multi-generational workforce. As younger employees propel digital workforce transformation and embrace technology adoption in the workplace, organisations need to show they are forward-thinking in their digital transformation strategies, and the emergent integration of social media in organisations is reshaping internal communication strategies, in a bid to improve corporate reputations and foster employee engagement. However, the impact of personal social media use on psychological and behavioural workplace outcomes is still debatebale with contrasting results in the literature identifying both positive and negative effects on workplace outcomes among organisational employees. This study seeks to examine this debate through the lens of social capital theory and study personal social media use at work using distinct variables of social use, cognitive use, and hedonic use. A quantitative analysis of data from 419 organisational employees in Jordan using SEM-PLS reveals that personal social media use at work is a double-edged sword as its impact differs by usage types. First, the social use of personal social media at work reduces job burnout, turnover intention, presenteeism, and absenteeism; it also increases job involvement and organisational citizen behaviour. Second, the cognitive use of personal social media at work increases job involvement, organisational citizen behaviour, employee adaptability, and decreases presenteeism and absenteeism; it also increases job burnout and turnover intention. Finally, the hedonic use of personal social media at work carries only negative effects by increasing job burnout and turnover intention. This study contributes to managerial understanding by showing the impact of different types of personal social media usage and recommends that organisations not limit employee access to personal social media within work time, but rather focus on raising awareness of the negative effects of excessive usage on employee well-being and encourage low to moderate use of personal social media at work and other personal and work-related online interaction associated with positive workplace outcomes. It also clarifies the need for further research in regions such as the Middle East with distinct cultural and socio-economic contexts

    Hunting Wildlife in the Tropics and Subtropics

    Get PDF
    The hunting of wild animals for their meat has been a crucial activity in the evolution of humans. It continues to be an essential source of food and a generator of income for millions of Indigenous and rural communities worldwide. Conservationists rightly fear that excessive hunting of many animal species will cause their demise, as has already happened throughout the Anthropocene. Many species of large mammals and birds have been decimated or annihilated due to overhunting by humans. If such pressures continue, many other species will meet the same fate. Equally, if the use of wildlife resources is to continue by those who depend on it, sustainable practices must be implemented. These communities need to remain or become custodians of the wildlife resources within their lands, for their own well-being as well as for biodiversity in general. This title is also available via Open Access on Cambridge Core

    Oklahoma soil fertility handbook

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    A high-performance open-source framework for multiphysics simulation and adjoint-based shape and topology optimization

    Get PDF
    The first part of this thesis presents the advances made in the Open-Source software SU2, towards transforming it into a high-performance framework for design and optimization of multiphysics problems. Through this work, and in collaboration with other authors, a tenfold performance improvement was achieved for some problems. More importantly, problems that had previously been impossible to solve in SU2, can now be used in numerical optimization with shape or topology variables. Furthermore, it is now exponentially simpler to study new multiphysics applications, and to develop new numerical schemes taking advantage of modern high-performance-computing systems. In the second part of this thesis, these capabilities allowed the application of topology optimiza- tion to medium scale fluid-structure interaction problems, using high-fidelity models (nonlinear elasticity and Reynolds-averaged Navier-Stokes equations), which had not been done before in the literature. This showed that topology optimization can be used to target aerodynamic objectives, by tailoring the interaction between fluid and structure. However, it also made ev- ident the limitations of density-based methods for this type of problem, in particular, reliably converging to discrete solutions. This was overcome with new strategies to both guarantee and accelerate (i.e. reduce the overall computational cost) the convergence to discrete solutions in fluid-structure interaction problems.Open Acces

    Application of advanced surface patterning techniques to study cellular behavior

    Get PDF
    Surface manipulation for the fabrication of chemical or topographic micro- and nanopatterns, has been central to the evolution of in vitro biology research. A high variety of surface patterning methods have been implemented in a wide spectrum of applications, including fundamental cell biology studies, development of diagnostic tools, biosensors and drug delivery systems, as well as implant design. Surface engineering has increased our understanding of cell functions such as cell adhesion and cell-cell interaction mechanics, cell proliferation, cell spreading and migration. From a plethora of existing surface engineering techniques, we use standard microcontact printing methods followed by click chemistry to study the role of intercellular contacts in collective cancer cell migration. Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-Cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-Cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration. Despite the remarkable progress in surface engineering technology and its applications, a combination of pattern properties such as stability, precision, specificity, high-throughput outcome and spatiotemporal control is highly desirable but challenging to achieve. Here, we introduce a versatile and high-throughput covalent photo-immobilization technique, comprising a light-dose dependent patterning step and a subsequent functionalization of the pattern via click chemistry. This two-step process is feasible on arbitrary surfaces and allows for generation of sustainable patterns and gradients. The method is validated in different biological systems by patterning adhesive ligands on cell repellent surfaces, thereby constraining the growth and migration of cells to the designated areas. We then implement a sequential photopatterning approach by adding a second switchable pattering step, allowing for spatiotemporal control over two distinct surface patterns. As a proof of concept, we reconstruct the dynamics of the tip/stalk cell switch during angiogenesis. Our results show that the spatiotemporal control provided by our “sequential photopatterning” system is essential for mimicking dynamic biological processes, and that our innovative approach has a great potential for further applications in cell science. In summary, this work introduces two novel and versatile paradigms of surface patterning for studying different aspects of cell behaviour in different cell types. The reliability of both setups is experimentally confirmed, providing new insight into the role of cell-cell contacts during collective cancer cell migration as well as the tip/stalk switch behaviour during angiogenesis

    Knowledge Transfer for and through the Replication of Organisational Routines in Franchise Systems

    Get PDF
    Routines are dispositions to behave according to established sets of rules that are also repositories of the organisational memory about “how things get done”. Franchise systems are organisational forms which expand through the replication of routines by new units owned by franchisees. Drawing on insights from the literatures on organisational learning, organisational evolution (under generalised Darwinism), and cognitive psychology, this thesis identifies the building blocks for a conceptual explanation of routine replication in franchise systems. It then proposes an original case study of Yázigi, a large Brazilian franchise system of language schools, which is used to develop a novel process model that captures how knowledge is transferred for and through the replication of routines within an expanding franchise system. Four principal lessons are derived. First, when direct knowledge transfer is not available, artefacts, most notably template representations of routines, are essential. Second, intermediaries, as agents of routine compilation who direct participants to template representations, are crucial to the process of routine replication. Third, just as routines are analogues of habits, routine compilation seems to reproduce habit compilation. Finally, existing learning-related habits of thought may work in favour of or against the adoption of new habits in the replication process. This thesis outlines the prescriptive implications of these lessons for franchise practitioners and details opportunities for future research
    corecore