104 research outputs found

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Evolutionary algorithms for multi-objective flexible job shop cell scheduling

    Get PDF
    The multi-objective flexible job shop scheduling in a cellular manufacturing environment is a challenging real-world problem. This recently introduced scheduling problem variant considers exceptional parts, intercellular moves, intercellular transportation times, sequence-dependent family setup times, and recirculation requiring minimization of makespan and total tardiness, simultaneously. A previous study shows that the exact solver based on mixed-integer nonlinear programming model fails to find an optimal solution to each of the ‘medium’ to ‘large’ size instances considering even the simplified version of the problem. In this study, we present evolutionary algorithms for solving that bi-objective problem and apply genetic and memetic algorithms that use three different scalarization methods, including weighted sum, conic, and tchebycheff. The performance of all evolutionary algorithms with various configurations is investigated across forty-three benchmark instances from ‘small’ to ‘large’ size including a large real-world problem instance. The experimental results show that the transgenerational memetic algorithm using weighted sum outperforms the rest producing the best-known results for almost all bi-objective flexible job shop cell scheduling instances, in overall

    Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study

    Full text link
    The permutation flowshop scheduling problem has been thoroughly studied in recent decades, both from single objective as well as from multi-objective perspectives. To the best of our knowledge, little has been done regarding the multi-objective flowshop with Pareto approach when sequence dependent setup times are considered. As setup times and multi-criteria problems are important in industry, we must focus on this area. We propose a simple, yet powerful algorithm for the sequence dependent setup times flowshop problem with several criteria. The presented method is referred to as Restarted Iterated Pareto Greedy or RIPG and is compared against the best performing approaches from the relevant literature. Comprehensive computational and statistical analyses are carried out in order to demonstrate that the proposed RIPG method clearly outperforms all other algorithms and, as a consequence, it is a state-of- art method for this important and practical scheduling problemThe authors thank the anonymous referees for their careful and detailed comments which have helped improve this manuscript considerably. This work is partially financed by the Spanish Ministry of Science and Innovation, under the projects "SMPA-Advanced Parallel Multiobjective Sequencing: Practical and Theorerical Advances" with reference DPI2008-03511/DPI and "RESULT-Realistic Extended Scheduling Using Light Techniques" with reference DPI2012-36243-C02-01 and by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA) and by the European Union through the European Regional Development Fund (FEDER) inside the R+D program "Ayudas dirigidas a Institutos Tecnologicos de la Red IMPIVA" during the year 2011, with project numbers IMDEEA/2011/142 and IMDEEA/2012/143.Ciavotta, M.; Minella, GG.; Ruiz García, R. (2013). Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study. European Journal of Operational Research. 227(2):301-313. https://doi.org/10.1016/j.ejor.2012.12.031S301313227

    Tabu Search: A Comparative Study

    Get PDF

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-

    A Linear Programming Model for Renewable Energy Aware Discrete Production Planning and Control

    Get PDF
    Industrial production in the EU, like other sectors of the economy, is obliged to stop producing greenhouse gas emissions by 2050. With its Green Deal, the European Union has already set the corresponding framework in 2019. To achieve Net Zero in the remaining time, while not endangering one's own competitiveness on a globalized market, a transformation of industrial value creation has to be started already today. In terms of energy supply, this means a comprehensive electrification of processes and a switch to fully renewable power generation. However, due to a growing share of renewable energy sources, increasing volatility can be observed in the European electricity market already. For companies, there are mainly two ways to deal with the accompanying increase in average electricity prices. The first is to reduce consumption by increasing efficiency, which naturally has its physical limits. Secondly, an increasing volatile electricity price makes it possible to take advantage of periods of relatively low prices. To do this, companies must identify their energy-intensive processes and design them in such a way as to enable these activities to be shifted in time. This article explains the necessary differentiation between labor-intensive and energy intensive processes. A general mathematical model for the holistic optimization of discrete industrial production is presented. With the help of this MILP model, it is simulated that a flexibilization of energy intensive processes with volatile energy prices can help to reduce costs and thus secure competitiveness while getting it in line with European climate goals. On the basis of real electricity market data, different production scenarios are compared, and it is investigated under which conditions the flexibilization of specific processes is worthwhile

    Swarm intelligence for scheduling: a review

    Get PDF
    Swarm Intelligence generally refers to a problem-solving ability that emerges from the interaction of simple information-processing units. The concept of Swarm suggests multiplicity, distribution, stochasticity, randomness, and messiness. The concept of Intelligence suggests that problem-solving approach is successful considering learning, creativity, cognition capabilities. This paper introduces some of the theoretical foundations, the biological motivation and fundamental aspects of swarm intelligence based optimization techniques such Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Artificial Bees Colony (ABC) algorithms for scheduling optimization

    A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs

    Get PDF
    Parallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms
    corecore